Zoom
Trash
Theories. Through The Wormhole: What Are We Made Of? Our understanding of the universe and the nature of reality itself has drastically changed over the last 100 years, and it's on the verge of another seismic shift.
In a 17-mile-long tunnel buried 570 feet beneath the Franco-Swiss border, the world's largest and most powerful atom smasher, the Large Hadron Collider, is powering up. Its goal is nothing less than recreating the first instants of creation, when the universe was unimaginably hot and long-extinct forms of matter sizzled and cooled into stars, planets, and ultimately, us. These incredibly small and exotic particles hold the keys to the greatest mysteries of the universe. Physics beyond the Standard Model. Physics beyond the Standard Model refers to the theoretical developments needed to explain the deficiencies of the Standard Model, such as the origin of mass, the strong CP problem, neutrino oscillations, matter–antimatter asymmetry, and the nature of dark matter and dark energy.[1] Another problem lies within the mathematical framework of the Standard Model itself – the Standard Model is inconsistent with that of general relativity, to the point that one or both theories break down under certain conditions (for example within known space-time singularities like the Big Bang and black hole event horizons).
Problems with the Standard Model[edit] The Standard Model of elementary particles. Fundamental interaction. Fundamental interactions, also called fundamental forces or interactive forces, are modeled in fundamental physics as patterns of relations in physical systems, evolving over time, that appear not reducible to relations among entities more basic.
Four fundamental interactions are conventionally recognized: gravitational, electromagnetic, strong nuclear, and weak nuclear. Everyday phenomena of human experience are mediated via gravitation and electromagnetism.