Magnetobiology. Magnetobiology is the study of biological effects of mainly weak static and low-frequency magnetic fields, which do not cause heating of tissues. Magnetobiological effects have unique features that obviously distinguish them from thermal effects; often they are observed for alternating magnetic fields just in separate frequency and amplitude intervals. Also, they are dependent of simultaneously present static magnetic or electric fields and their polarization.
Magnetobiology is a subset of bioelectromagnetics. Bioelectromagnetism and biomagnetism are the study of the production of electromagnetic and magnetic fields by biological organisms. An example of magnetobiological effects is the magnetic navigation by migrant animals. Reproducibility[edit] The results of magnetobiological experiments are poorly reproducible. 10–20% of publications report failed attempts to observe magnetobiological effects.
Safety standards[edit] Medical approach[edit] Possible causes of the effects[edit]
Les travaux du Professeur Yves Rocard. YVES ROCARD ET LA THEORIE DU BIOMAGNETISME. Yves Rocard a obtenu son doctorat en mathématiques en 1927 de l'École Normale Supérieure (ENS) de Paris, puis en sciences physiques l'année suivante, et il y obtient la chaire de physique. Il travaille dans l'industrie de l'électronique. Grand physicien, mathématicien. Il apprend pendant la guerre lors d'une mission en Angleterre, alors qu'il est Directeur du Département de Recherche des Forces Navales Françaises Libres, que les radars anglais ont détecté de fortes émissions radio du Soleil. Aussi à son retour en France, il devient en 1945, directeur du laboratoire de physique de l'Ecole Normale Supérieure (pendant 28 ans) où il propose de mettre en place un site de radio-astronomie. Il parvient même à mettre la main sur de l'équipement pour démarrer un tel projet, fournissant 2 miroirs de radars allemands de type "Wurzburg", chacun de 7,50 m de diamètre.
En 1966, par l'entremise de son ami Aimé Michel, Jacques Vallée rencontre Rocard. Auteur de : Interview du Professeur Yves Rocard. Rocard interview. Interview du Professeur Yves Rocard « Comment douter que l’homme soit un être magnétique ? » Jean-Pierre Perraud a rencontré le professeur Yves Rocard à trois reprises, entre1984 et 1989. Il a bien voulu rassembler les notes qu’il a prises au cours de ces trois entrevues et les synthétiser sous la forme de l’interview suivante. Il s’agit donc d’une publication posthume de propos tenus par le professeur de son vivant. Comme on le verra, les déclarationsdu professeur, qui sont recoupées par divers ouvrages et articles qu’il a publiés de son vivant, constituent une validation scientifique sans réserve du magnétisme. Jean-PierrePerraud — Vous avez attendu d’être à la retraite pour prendre publiquement position sur des phénomènes autant controversés que la sourcellerie, la radiesthésie et le magnétisme, sur lequels « l'établissement » scientifique a toujours jeté l’anathème et qu’il a qualifiés de charlatanisme et d’obscurantisme.
Turenne Louis - Tome 1. Sn Etudedessexeset des anlmanx(regne animal). Ubommeatlafemme.Leurspectre.Heoonnaissaneedessexes.L'bommeestpositll,Lafemmeelltnegative.DlJterminationdusoxode l' eufan t avan Ianaissunee.Spectre do l'hommeaprcssamort.Losanimauxsuperieurs,inlerieurs,invertebres.Lasouris,Lesreulsotloursexe,Losabeillas. Les microbes (regne animal).Lesmaladies,Lesremedes.Etudetinsang,L'ausoultatlonaveclsadHectcufS. Etude desgrainesetdesv~g~taux(regne Vegetal).Lafanctionchlorophylienne. Loslegumes.Losfleurs.Losarbustos.Losarbres, Lesmetaux(regne mineral).Losminerals,Prospection miniere, etl'argent,' Lecharbon. Lapetrole,Lapctasse. Lossuperphospbates, etc Corpsonlouisdanslaterre. Phenomenes geometriques desradiations. Le triangle. rectangle. Lespolygones.Lecercle,La parabola.L'hyperbole, ZOllCS neutralisees.Pointspart.ieuliera,Produitsnoutralisuntlosdeteoteurs,Produits I3t appareil~reniorcateurs.to Lesbaguettes.
Leursformes,leur composition, leursdimen-sions,leurpoids.Personnesaptos a ParaU~lisme entreIes phenomenes des: Lesantennes Spectres. PhotogrQPhieen sans. Turenne Louis - Tome 2. Turenne Louis - Tome 3. Definitions.CHAPlTnE1Lasciencedesandes"..,.Appareilsutilisespourlesexperiences,,. Emetteurs d'ondes"..,.D6teoteursunivorsols....................CHAPITRE Ondesentretenuesprimaires,aecondaires.Ondssportantes.Ondespendulairesportccs::'. ". Ondesentretenues primaires,seeondnires,ultrapene- trantes..............,.. Moyelli! Temoins,.CHAPITHE MethodeduPontdeTurennepourroconnait~etou.teslosondes.Moyendereeonnattrelescorp.
ExperiencessurIeRadium.Les8familiesdesondasatomiques etle classemontdes aiCmentsdeMendeleef.CHAPITRE Los4methodesderecherchedeshauteu~sH.etdeslongueursLdesondesdescorps(dispersionpal'Ieprisrno),.,,..,,.,.CHAPITREVIIEohelledeproportiondesmesuresen.,? Timatrss parlesd6tecteursotenmilliemosdernilli-metresparlesphysiciens,,CHAPITREVIIIE:r:empled'applicationdesmethodesdemesure.,,....
CHAPITREIXContrelesdutableaudeMendoloef.,.,.,,.. CHAPlTREXApplicationdelamethodenuxcouleurs,.Tableaudesfrequenceselectro-magnetiquescomplete. CHAPIThEXILoidessemblahlns t(~ t5 Chocs atomiques.,,,,,,. il. ttl Les Le Dynamisme La 3i. Turenne Louis - Tome 4. Baguettes.- ElI08 avaiont oLe sucoessivementencoud~ieI'(sortedenoisetier},enboissouplos,en meraux creuxoup deformesdin'6rontes,enhaleinesrondosouplates,avecousanscnroulementssolanotdea, et, toutesnousdorinaicnt~osrosultatsmoyens.Depuis,nousavonsetahli unebaguetteunioerselle b,re-vetee IormeededeuxhrinsplatsdeIauonsdeb,ale~nedesmel'SduNord, Un brin male, unbrinIernelle.Uneaiguilleaimantce,unpivotisole, frottementdur,poutpr_endrel'orien-tationvoulueparrapport a labaguettet.onuehOflzon~alement.Unoseulebaguettepeutetretransforrnee POtU' donnercinqIonc-tionnementadiff6rentsetpermettroainsidedecelorahsolumanttoutes lea ondesdelanature,mernevert.icales,coqu'aueuneautrebag\~ctten'avaitpufairej~squ,e-I,a.. eliminent pasIeIacteur,homme.Laquestionest' I'etudeavecappureilsdeT.S.F. ladecouvertedesloisd'oudecouleral'appareiloherchs, fre.1- B<9guette,untver-selle u;He aimantee• 5Fonetionnement~_ Bt•• r» position del'aiguilleaimantee,Pointenor~.
La bagueu,e.est posuwe, cest-a-dire qu'ellen'oscillora quesurlescorpspoaitifs. position. Labaguette e. Turenne Louis - Tome 5. Turenne Louis - Tome 8. Magnetoception. The homing pigeon can quickly return to its home, using its ability to sense the Earth's magnetic field and other cues to orient itself Magnetoception (or magnetoreception as it was first referred to in 1972[1]) is a sense which allows an organism to detect a magnetic field to perceive direction, altitude or location. This sense has been proposed to explain animal navigation in vertebrates and insects, and as a method for animals to develop regional maps. For the purpose of navigation, magnetoception deals with the detection of the Earth's magnetic field.
Magnetoception has been observed in bacteria, in invertebrates such as fruit flies, lobsters and honeybees. It has also been demonstrated in vertebrates including birds, turtles, sharks and stingrays. Magnetoception in humans is controversial. Proposed mechanisms[edit] An unequivocal demonstration of the use of magnetic fields for orientation within an organism has been in a class of bacteria known as magnetotactic bacteria.
www.gps.caltech.edu/~jkirschvink/pdfs/COINS.pdf. www.gps.caltech.edu/~jkirschvink/pdfs/KirschvinkBEMS92.pdf. www.ncbi.nlm.nih.gov/pmc/articles/PMC2843994/pdf/rsif20090456.pdf. The Physics and Neurobiology of Magnetoreception. Transcranial magnetic stimulation. Background[edit] Early attempts at stimulation of the brain using a magnetic field included those, in 1910, of Silvanus P. Thompson in London.[2] The principle of inductive brain stimulation with eddy currents has been noted since the 20th century. The first successful TMS study was performed in 1985 by Anthony Barker and his colleagues at the Royal Hallamshire Hospital in Sheffield, England.[3] Its earliest application demonstrated conduction of nerve impulses from the motor cortex to the spinal cord, stimulating muscle contractions in the hand.
As compared to the previous method of transcranial stimulation proposed by Merton and Morton in 1980[4] in which direct electrical current was applied to the scalp, the use of electromagnets greatly reduced the discomfort of the procedure, and allowed mapping of the cerebral cortex and its connections. Theory[edit] From the Biot–Savart law it has been shown that a current through a wire generates a magnetic field around that wire. Risks[edit] Magnetocardiography. Magnetocardiography (MCG) is a technique to measure the magnetic fields produced by electrical activity in the heart using extremely sensitive devices such as the Superconducting Quantum Interference Device (SQUIDs). If the magnetic field is measured using a multichannel device, a map of the magnetic field is obtained over the chest; from such a map, using mathematical algorithms that take into account the conductivity structure of the torso, it is possible to locate the source of the activity.
For example, sources of abnormal rhythms or arrhythmia, may be located using MCG. History[edit] The first MCG measurements were made by Baule and McFee[1] using two large coils placed over the chest, connected in opposition to cancel out the relatively large magnetic background. Heart signals were indeed seen, but were very noisy. Magnetocardiography is now used in various laboratories and clinics around the world, both for research on the normal human heart, and for clinical diagnosis.[5] Magnetoencephalography. Magnetoencephalography (MEG) is a functional neuroimaging technique for mapping brain activity by recording magnetic fields produced by electrical currents occurring naturally in the brain, using very sensitive magnetometers.
Arrays of SQUIDs (superconducting quantum interference devices) are currently the most common magnetometer, and SERF being investigated for future machines. Applications of MEG include basic research into perceptual and cognitive brain processes, localizing regions affected by pathology before surgical removal, determining the function of various parts of the brain, and neurofeedback.
This can be applied in a clinical setting to find locations of abnormalities as well as experimental setting to simply measure brain activity[1] History of MEG[edit] At first, a single SQUID detector was used to successively measure the magnetic field at a number of points around the subject’s head.
The basis of the MEG signal[edit] Origin of the brain's magnetic field. Fetal MEG[edit] Biomagnetism. Biomagnetism fields are much weaker than typical fields in our environment such as those produced by motor vehicles, elevators etc. The principle challenge in field measurement is from environmental noise. The most straight forward solution for shielding the magnetic noise is a magnetically shielding room (MSR).Figure10 shows an MSR Figure 10 Biomagnetic fields are almost a billion times weaker than the earth’s geomagnetic field, thereby requiring a high performance MSR to shield out the broad spectrum of everyday RF and magnetic interference.
Optimum shielding effectiveness>=80db from 10Khz-1MhzReliable MSR is constructed of several high grade materials such as aluminium, Mu metal and copper. Magnetic shielding: Mu metal (high permeability alloy)Eddy current and RF shielding: aluminium (high conductivity)WALL: Acoustic dampingFLOORS: Vibration damping & antistaticWEIGHT: Approximately 3400kg Figure 11 · Storage of iron in the liver· Particles in lungs· Brain studies· Heart functions Home. Magnetometer. Helium Vector Magnetometer (HVM) of the Pioneer 10 and 11 spacecraft Magnetometers are measurement instruments used for two general purposes: to measure the magnetization of a magnetic material like a ferromagnet, or to measure the strength and, in some cases, the direction of the magnetic field at a point in space. The first magnetometer was invented by Carl Friedrich Gauss in 1833 and notable developments in the 19th century included the Hall Effect which is still widely used.
Magnetometers are widely used for measuring the Earth's magnetic field and in geophysical surveys to detect magnetic anomalies of various types. They are also used militarily to detect submarines. Consequently some countries, such as the USA, Canada and Australia classify the more sensitive magnetometers as military technology, and control their distribution. Introduction[edit] Magnetic fields[edit] Types of magnetometer[edit] There are two basic types of magnetometer measurement. Performance and capabilities[edit] SQUID. Sensing element of the SQUID A SQUID (for superconducting quantum interference device) is a very sensitive magnetometer used to measure extremely subtle magnetic fields, based on superconducting loops containing Josephson junctions.
History and design[edit] There are two main types of SQUID: direct current (DC) and radio frequency (RF). RF SQUIDs can work with only one Josephson junction, which might make them cheaper to produce, but are less sensitive. DC SQUID[edit] Diagram of a DC SQUID. Enters and splits into the two paths, each with currents and . Represents the magnetic flux threading the DC SQUID loop. Electrical schematic of a SQUID where Ib is the bias current, I0 is the critical current of the SQUID, is the flux threading the SQUID and is the voltage response to that flux.
Left: Plot of current vs. voltage for a SQUID. The DC SQUID was invented in 1964 by Robert Jaklevic, John J. Splits into the two branches equally. In the other branch; the total current becomes in one branch and . . . SERF. A spin exchange relaxation-free (SERF) magnetometer is a type of magnetometer developed at Princeton University in the early 2000s. SERF magnetometers measure magnetic fields by using lasers to detect the interaction between alkali metal atoms in a vapor and the magnetic field. The name for the technique comes from the fact that spin exchange relaxation, a mechanism which usually scrambles the orientation of atomic spins, is avoided in these magnetometers. This is done by using a high (1014 cm−3) density of Potassium atoms and a very low magnetic field. Under these conditions, the atoms exchange spin quickly compared to their magnetic precession frequency so that the average spin interacts with the field and is not destroyed by decoherence.[1] Spin-exchange relaxation[edit] Spin-exchange collisions preserve total angular momentum of a colliding pair of atoms but can scramble the hyperfine state of the atoms.
The spin-exchange relaxation rate where is the nuclear spin, Relaxation rate. Compass & Fluxgate Magnetometers. The Sun with its immense energy stores and close proximity to Earth is a great celestial object to monitor at all wavelengths. What's more, one can monitor activity on the Sun via indirect means. More precisely, it is possible to detect solar activity by monitoring the Earths magnetic field. It's also possible to detect solar activity such as solar flares by monitoring Very Low Frequency (VLF) signal paths which use the Ionosphere as a means of propagation. Check out my SID receiver page. I wanted to build a device which I could use to monitor geomagnetic storms from my location.
I initially built a simple magnetometer consisting of some magnets suspended by a thread (details found here). The schematic depicted below is from AuroraWatch and is the one I decided to build. Click on the schematic for more details from AuroraWatch. I have included a picture of the completed magnetometer and the power supply. The recording device is a DI-194RS. Fluxgate Magnetometer. Gaussmeters for Measuring Magnetic Fields.