Recherche-action - Les modalités de la démarche (démarche théorique centrée sur la pratique) 1Donner une définition de la recherche-action est un exercice délicat si l’on se réfère à l’abondante littérature qui traite de ce mode de recherche appliquée à la pratique quotidienne de classe. En effet, un simple coup d’œil aux termes utilisés révèle déjà la multiplicité des concepts sous-tendus. Du côté francophone, on trouve des appellations telles que « co-apprentissage », « méthodologie éducative » ou encore « ingénierie didactique ». Le monde anglophone témoigne d’une créativité impressionnante : aux côtés de la classique appellation « action research » on trouve pêle-mêle « teacher research », « classroom research », « co-learning », « co-operative inquiry », « critical reflection », ou encore « practical inquiry ». 3Plusieurs écoles de pensée impliquent de vastes différences d’opinion sur ce qui constitue véritablement la recherche-action. 7Cette méthodologie est destinée à avoir des retombées autant dans la pratique que dans la théorie. Figure 1. Figure 2.
Half Yellow Fraction Art Students explore part-whole relationships while creating unique designs! This math art project was discovered by my mentor teacher. Second and third graders were asked to create art using geometric pattern blocks. The only catch was that their design had to be half yellow, meaning they had to base their artwork around yellow hexagon blocks. Before they recreated it on a sheet of paper, I went around and checked their math. If you want to incorporate technology or do not have access to geometric pattern blocks or a stencil, you can use Illuminations’ Patch Tool! This project is a fantastic way to assess students’ knowledge about fractions. Erin Bittman is a second-/third-grade student teacher in a multi-grade classroom at a German Magnet School.
Common Core Problem Based Curriculum Maps – emergent math The following Problem Based Learning (PrBL) curriculum maps are based on the Math Common Core State Standards and the associated scope and sequences. The problems and tasks have been scoured from thoughtful math bloggers who have advanced our practice by posting their materials online. The Scope and Sequences for Algebra 1, Geometry, Algebra 2, Math 9 (Integrated), Math 10 (Integrated), and Math 11 (Integrated) are from Pearson. Other Scope and Sequences were developed by me, modeling a similar visual style. Grade 3 CCSS PrBL Curriculum Map Grade 4 CCSS PrBL Curriculum Map Grade 5 CCSS PrBL Curriculum Map Grade 6 CCSS PrBL Curriculum Map Grade 7 CCSS PrBL Curriculum Map Grade 8 CCSS PrBL Curriculum Map Math 9 (Integrated) CCSS PrBL Curriculum Map Math 10 (Integrated) CCSS PrBL Curriculum Map Math 11 (Integrated) CCSS PrBL Curriculum Map Algebra 1 CCSS PrBL Curriculum Map Geometry CCSS PrBL Curriculum Map Algebra 2 CCSS PrBL Curriculum Map — Geoff Like this: Like Loading...
Global Math Challenge: an online contest for math lovers worldwide. Pédagogie du projet - 25 méthodes innovantes à découvrir Soyons pragmatiques ! Aidons nos élèves à résoudre les problématiques qui se présenteront à eux demain : comment s’organiser et prendre les bonnes décisions sont les clés de la pédagogie de projet. Aujourd’hui, l’enseignement passe par l’expérience. Il ne se cantonne pas à transmettre des compétences disciplinaires. L’expérience vécue est la première source de motivation chez la plupart des individus. Avec la #PedagogieDeProjet, les élèves sont mieux préparés à affronter le monde réel Click To Tweet Le Buck Institute for Education (USA) est considéré comme l’une des meilleures ressources en matière de pédagogie de projet. – Savoirs fondamentaux, connaissances et compétences personnelles : le projet est centré sur les objectifs pédagogiques de l’élève, c’est à dire les contenus et compétences élémentaires à acquérir, tels que l’esprit critique, la résolution de problèmes, ou la coopération, le consensus et l’autogestion.
Einstein Peter Liljedahl » Good Problems These are problems selected from a variety of resources. Whenever possible I will list the source from which it came. There will be no solutions provided here, but if you follow the link to the source there may be solutions there. Kite Fold #1 For what dimension paper will these folds produce a kite? Duelling Dice Consider the following four dice and the numbers on their faces: Red : 0, 1, 7, 8, 8, 9Blue: 5, 5, 6, 6, 7, 7Green: 1, 2, 3, 9, 10, 11Black: 3, 4, 4, 5, 11, 12 These are used to play a game for two people. Arithmetic Series Find the sum of the arithmetic series 13 + … + 61. Lost Primes Three cards (see below) each have a prime number on the back. Scrambled Dice Imagine a typical 6-sided die, and notice that the sum of opposite faces is always seven. Painted Cube Paint all the sides of a 3 x 3 x 3 cube. Differentiable Function Consider the differentiable function below. Puck Play The game starts with the puck already on the board, as shown. Egg timer Rubic’s Cubeish Chessboard 1001 Pennies
Year 10 Revision Competition | sxpmaths – the PROcrastinator @mathsjem today published this blog post about resources for stretching able Year 10/11 GCSE students and it triggered my memory of a revision competition I ran with my top set year 10 class in my last school. The materials I used as the basis were the Foundation of Advanced Mathematics papers (this is an FSMQ offered by OCR/MEI). There are a dozen or so past papers available which is more than enough! I’ll detail the process exactly as I ran it, but you may well think of adaptations to improve this for your own classes. Some set-up Create a scoring spreadsheet with each student’s name and enough columns for the number of papers you will eventually work through. Before Print one of the papers, laminate it and slice it to separate the questions – Rule 1: don’t let the students write on the questions! During After When the time is up, collect in all the questions and get the pairs to swap answer sheets.Project the mark scheme from the OCR website – it’s great these papers are multiple choice!
Gestion de l'espace classe - 7 idées pour (ré)aménager la salle de classe Quand vous aménagez votre salle de classe, vous ne faites pas que choisir la décoration et la couleur des paniers, vous créez un espace qui répond aux besoin de l’enseignant et des différents groupes d’élèves. Peu de professeurs ont la chance de partir de zéro, et ils doivent composer avec l’existant, ou ce qu’ils peuvent acheter. L’aménagement doit donc être efficient et économique. Pensez aux lieux qui vous inspirent et vous motivent pour bien travailler. Lorsque vous réaliserez votre plan, gardez à l’esprit les 7 E, cela vous évitera de passer plus de temps à choisir une typographie ou un tableau, qu’à faire de votre classe un endroit génial pour apprendre !
5 Best Practices for Connecting STEAM with Special Ed My STEAM journey began five years ago as a special educator co-teaching 7th grade math and science. Immediately, my co-teacher and I contemplated how we could build more buy-in from our students. How could we plan hands-on lessons that would connect our math, science, and ELA (English Language Arts) standards? We also reflected on the missed opportunities that our students with special needs faced. These students oftentimes go to intervention classes in place of arts classes (technology, art, music, etc). Challenges Tasked with the challenge of integrating the arts with a cross curricular approach, we planned our first STEAM project. By purposefully keeping the guidelines open-ended, the students happily surprised us with a variety of presentations. After the success of this cross-curricular STEAM project, our grade-level team planned several others to our students’ delight. Give options rather than a set outcome Allow for wait time Make it concrete, not abstract It’s simple.
Same and Different | Reflections and Tangents I’ve been using “Same and Different” as an inquiry strategy with my students for several years. Read on for more about this thinking routine and some of my favorite prompts. What is “Same and Different” ? “Same and Different” is an inquiry strategy sometimes known as “Compare and Contrast” or various other names (see Resources links below). The routine is launched by presenting two or more math situations, then have students examine and note how they are the same and how they are different. The examples that follow are grouped (loosely) by theme, and many can be used in several math levels. Representation Examples These examples begin with a visual representation to tap into students’ interpretation of the graph or diagram. Example 1: (PreAlgebra or Algebra 1) The following two images show these subtraction problems: 5 – 2 (top) and 2 – 5 (bottom). Example 2: (Algebra 1) These images get students talking about slope and y-intercept of linear equations. (graphs 1 & 3). How to Solve? –2 or x x