Impact of Biofield Treatment on Methyl-2-Naphthyl Ether
Abstract Methyl-2-naphthyl ether (MNE) is an organic compound and used as the primary moiety for the synthesis of several antimicrobial and anti-inflammatory agents. This study was attempted to evaluate the impact of biofield energy treatment on the physical, thermal, and spectroscopic properties of MNE. The study was carried out in two groups i.e., control and treated. The treated group was subjected to Mr. Keywords: Methyl-2-naphthyl ether; Biofield energy; X-ray diffraction; Surface area analysis; Differential scanning calorimetry;Thermogravimetric analysis Abbreviations MNE: Methyl-2-Naphthyl Ether; NCCAM: National Center For Complementary And Alternative Medicine; XRD: X-Ray Diffraction; DSC: Differential Scanning Calorimetry; TGA: Thermogravimetric Analysis; DTA: Differential Thermal Analysis; DTG: Derivative Thermogravimetry; FT-IR: Fourier Transforms Infrared Introduction Naphthalene has been described as new class of potent antimicrobials against wide range of human pathogens. 1.
The Science Behind The Trivedi Effect®
Atoms exist in all states of matter. Even the cells of microbes, plants, human beings and all other living / non-living things consist entirely of atoms in the form of complex molecules. Atoms, at the most elementary level, are made from electrons, protons, neutrons and several known and unknown subatomic particles. There have been several attempts to develop a unified picture that links the macroscopic universe and the microscopic atomic and subatomic world. The dual nature of matter and radiation led to quantum indeterminacy. Atoms and subatomic particles are in continuous movement. Gravity is yet another energy that plays a dominant role at the macroscopic level (at the level of large masses like human beings, planets etc.). According to the prophetic novel “The Trigger,” written by late Sir Arthur C. The matter is considered to be a mere derivation: a subordinate phenomenon. Mr.
The Impact of Biofield Treatment on p-Chlorobenzonitrile
Abstract Para-chlorobenzonitrile (p-CBN) is widely used as a chemical intermediate in the manufacturing of dyes, medicines, and pesticides, however; sometimes it may cause runaway reactions at high temperatures. The current study was designed to evaluate the impact of biofield energy treatment on the physical, thermal, and spectroscopic properties of p-CBN. The analysis was done by dividing the p-CBN samples into two groups that served as control and treated. The treated group received Mr. Keywords: Biofield Energy Treatment, Para-Chlorobenzonitrile, X-ray Diffraction Study, Surface Area Analyzer, Differential Scanning Calorimetry, Thermogravimetric Analysis Introduction Aromatic nitriles have wide applications in the production of dyes, pesticides and pharmaceuticals. The stability profile of any chemical compound is the most desired quality that determines its shelf life and purity to be used as an intermediate. 2. p-chlorobenzonitrile (p-CBN) was procured from S D Fine Chemicals Pvt.
Impact of Biofield Treatment on 2, 4-Dihydroxybenzophenone
Abstract Study background: 2,4-Dihydroxybenzophenone (DHBP) is an organic compound used for the synthesis of pharmaceutical agents. The objective of this study was to investigate the influence of biofield energy treatment on the physical, thermal and spectral properties of DHBP. Methods: The control and treated DHBP samples were further characterized by X-ray diffraction (XRD), differential scanning calorimetry (DSC), thermogravimetric analysis (TGA), laser particle size analyser, surface area analyser, Fourier transform infrared (FT-IR) spectroscopy, and ultra violet-visible spectroscopy (UV-vis) analysis. Results: The XRD study indicated a slight decrease in the volume of the unit cell and molecular weight of treated DHBP as compared to the control sample. Conclusion: Altogether, the results showed significant changes in the physical, thermal and spectral properties of treated DHBP as compared to the control. Introduction The present work is focused to study the impact of Mr. Conclusions
Mahendra Kumar Trivedi
Mahendra Kumar Trivedi earned his 5-year Bachelor’s degree in Mechanical Engineering in 1985 . Mahendra Kumar Trivedi worked as an Engineer for 10 years. In 1995, Mr. Trivedi discovered that he had the unique ability to harness the energy from the universe and transmit it to anywhere on the globe, infusing it into living organisms and nonliving materials, thus optimizing their potential. For the next 5-7 years, Trivedi applied this newfound discovery to helping people optimize their potential, and this unique phenomenon resulting from Mr. Trivedi’s biofield energy treatments became internationally renowned as The Trivedi Effect®.
"An Effect of Biofield Treatment on Multidrug-resistant Burkholderia ce" by Mahendra Kumar Trivedi
Abstract Burkholderia cepacia (B. cepacia) is an opportunistic, Gram negative pathogen which causes infection mainly in immunocompromised population and associated with high rate of morbidity and mortality in cystic fibrosis patients. Aim of the present study was to analyze the impact of biofield treatment on multidrug resistant B. cepacia. Citation Information Mahendra Kumar Trivedi.
Evaluation of the Impact of Biofield Treatment on Physical and Thermal Properties of Casein Enzyme Hydrolysate and Casein Yeast Peptone
Abstract In the present study, the influence of biofield treatment on physical and thermal properties of Casein Enzyme Hydrolysate (CEH) and Casein Yeast Peptone (CYP) were investigated. The control and treated samples were characterized by Fourier transform infrared (FT-IR) spectroscopy, differential scanning calorimetry (DSC), Thermo Gravimetric Analysis (TGA), particle size and surface area analysis. The FTIR results revealed that biofield treatment has caused reduction of amide group (amide-I and amide-II) stretching vibration peak that is associated with strong intermolecular hydrogen bonding in treated CEH as compared to control. However, no significant changes were observed in FTIR spectrum of treated CYP. Keywords: Casein enzyme hydrolysate; Casein yeast peptone; Biofield treatment; FT-IR; TGA; DSC; Particle size and Surface area Introduction Milk proteins are natural vehicles and widely explored in food industries due to their inherent nutritional and functional properties. 1.
Human Biofield’s Influence on Properties of Indole
Abstract Indole compounds are important class of therapeutic molecules, which have excellent pharmaceutical applications. The objective of present research was to investigate the influence of biofield treatment on physical and thermal properties of indole. The study was performed in two groups (control and treated). The control group remained as untreated, and biofield treatment was given to treated group. The control and treated samples were characterized by X-ray diffraction (XRD), differential scanning calorimetry (DSC), thermogravimetric analysis (TGA), Fourier transform infrared (FT-IR) spectroscopy and ultraviolet-visible (UV-Vis) spectroscopy. Keywords:Indole; X-ray diffraction; Thermal analysis; Fourier transform infrared spectroscopy; UV-Vis spectroscopy Abbreviations Introduction The theoretical basis of medicinal chemistry has become much more sophisticated, but is naive to suppose that the discovery of drugs is merely a matter of structure-activity relationships. Mr. Conclusion