background preloader

Impact of Biofield Treatment on Methyl-2-Naphthyl Ether

Impact of Biofield Treatment on Methyl-2-Naphthyl Ether
Abstract Methyl-2-naphthyl ether (MNE) is an organic compound and used as the primary moiety for the synthesis of several antimicrobial and anti-inflammatory agents. This study was attempted to evaluate the impact of biofield energy treatment on the physical, thermal, and spectroscopic properties of MNE. The study was carried out in two groups i.e., control and treated. Keywords: Methyl-2-naphthyl ether; Biofield energy; X-ray diffraction; Surface area analysis; Differential scanning calorimetry;Thermogravimetric analysis Abbreviations MNE: Methyl-2-Naphthyl Ether; NCCAM: National Center For Complementary And Alternative Medicine; XRD: X-Ray Diffraction; DSC: Differential Scanning Calorimetry; TGA: Thermogravimetric Analysis; DTA: Differential Thermal Analysis; DTG: Derivative Thermogravimetry; FT-IR: Fourier Transforms Infrared Introduction Naphthalene has been described as new class of potent antimicrobials against wide range of human pathogens. Materials and Methods Study design XRD study

Impact of Human Biofield Energy on 1,2,3-Trimethoxybenzene Abstract Study background: 1,2,3-Trimethoxybenzene is an important compound used for the synthesis of chemicals and pharmaceutical agents. The objective of this study was to investigate the influence of biofield energy treatment on the physical, thermal and spectral properties of 1,2,3-trimethoxybenzene. Methods: The study was performed by dividing the sample into two groups (control and treated). Results: XRD studies revealed the significant increase in crystallite size of treated sample by 45.96% as compared to the control sample. Keywords: X-ray diffraction; Thermal analysis; Fourier transform infrared (FT-IR) spectroscopy; Ultra violet-visible spectroscopy (UVVis) analysis Abbreviations: XRD: X-ray diffraction; DSC: Differential scanning calorimetry; TGA: Thermogravimetric analysis; FT-IR: Fourier transform infrared; UV-Vis: Ultra Violet-Visible spectroscopy analysis; CAM: Complementary and alternative medicine Introduction Materials and Methods Characterization G=kλ/ (bCosθ) Conclusions

The Science Behind The Trivedi Effect® Atoms exist in all states of matter. Even the cells of microbes, plants, human beings and all other living / non-living things consist entirely of atoms in the form of complex molecules. Atoms, at the most elementary level, are made from electrons, protons, neutrons and several known and unknown subatomic particles. Physicists and chemists hypothesize several theories to explain the systematic and disciplinary existence of various species inside the atom, the nature of bonds between atoms in condensed states (such as solids and liquids), as well as for the way the particles are working inside the atom. There have been several attempts to develop a unified picture that links the macroscopic universe and the microscopic atomic and subatomic world. The electromagnetic spectrum, of which visible light only forms a small portion of, arises from the cosmic radiation filtered by the atmosphere surrounding the planet. The dual nature of matter and radiation led to quantum indeterminacy. Mr.

Human Biofield’s Influence on Properties of Indole Abstract Indole compounds are important class of therapeutic molecules, which have excellent pharmaceutical applications. The objective of present research was to investigate the influence of biofield treatment on physical and thermal properties of indole. The study was performed in two groups (control and treated). The control group remained as untreated, and biofield treatment was given to treated group. Keywords:Indole; X-ray diffraction; Thermal analysis; Fourier transform infrared spectroscopy; UV-Vis spectroscopy Abbreviations XRD: X-ray diffraction; DSC: Differential scanning calorimetry; TGA: Thermogravimetric analysis; DTA: Differential thermal analyzer; DTG: Derivative thermogravimetry; FT-IR: Fourier transform infrared; UV-Vis: Ultraviolet-visible Introduction The theoretical basis of medicinal chemistry has become much more sophisticated, but is naive to suppose that the discovery of drugs is merely a matter of structure-activity relationships. Mr. Materials and Methods 1.

The Impact of Biofield Treatment on p-Chlorobenzonitrile Abstract Para-chlorobenzonitrile (p-CBN) is widely used as a chemical intermediate in the manufacturing of dyes, medicines, and pesticides, however; sometimes it may cause runaway reactions at high temperatures. The current study was designed to evaluate the impact of biofield energy treatment on the physical, thermal, and spectroscopic properties of p-CBN. The analysis was done by dividing the p-CBN samples into two groups that served as control and treated. Keywords: Biofield Energy Treatment, Para-Chlorobenzonitrile, X-ray Diffraction Study, Surface Area Analyzer, Differential Scanning Calorimetry, Thermogravimetric Analysis Introduction Aromatic nitriles have wide applications in the production of dyes, pesticides and pharmaceuticals. The stability profile of any chemical compound is the most desired quality that determines its shelf life and purity to be used as an intermediate. 2. p-chlorobenzonitrile (p-CBN) was procured from S D Fine Chemicals Pvt. 2.1. 2.2. G = kλ/(bCosθ) (1) 3.

Mahendra Kumar Trivedi Mahendra Kumar Trivedi earned his 5-year Bachelor’s degree in Mechanical Engineering in 1985 . Mahendra Kumar Trivedi worked as an Engineer for 10 years. In 1995, Mr. Trivedi discovered that he had the unique ability to harness the energy from the universe and transmit it to anywhere on the globe, infusing it into living organisms and nonliving materials, thus optimizing their potential. For the next 5-7 years, Trivedi applied this newfound discovery to helping people optimize their potential, and this unique phenomenon resulting from Mr.

"An Effect of Biofield Treatment on Multidrug-resistant Burkholderia ce" by Mahendra Kumar Trivedi Abstract Burkholderia cepacia (B. cepacia) is an opportunistic, Gram negative pathogen which causes infection mainly in immunocompromised population and associated with high rate of morbidity and mortality in cystic fibrosis patients. Aim of the present study was to analyze the impact of biofield treatment on multidrug resistant B. cepacia. Clinical sample of B. cepacia was divided into two groups i.e. control and biofield treated. The analysis was done after 10 days of treatment and compared with control group. Control and treated group were analyzed for susceptibility pattern, MIC value, biochemical studies and biotype number using MicroScan Walk-Away® system. Citation Information Mahendra Kumar Trivedi.

Biofield Treatment’s Impact on Metronidazole & Tinidazole Abstract Metronidazole and tinidazole are widely used antimicrobial drugs against Gram-negative and Gram-positive anaerobic bacteria. The present study was aimed to evaluate the impact of biofield treatment on metronidazole and tinidazole using FT-IR and UV spectroscopy. The study was carried out in two groups i.e. control and treatment. Treatment groups were subjected to Mr. Trivedi’s biofield treatment while no treatment was given to control group. Keywords: Metronidazole; Tinidazole; Biofield treatment; Fourier transform infrared spectroscopy; Ultraviolet spectroscopy Introduction Metronidazole and tinidazole are structurally similar synthetic imidazole derivative and widely used as antimicrobials against several infections such as infection of intra-abdominal, respiratory tract, skin, central nervous, oral and dental, bone and joint, etc. Both metronidazole and tinidazole possess some stability related difficulty. Mr. Materials and Methods Study design UV-Vis spectroscopic analysis 1.

Impact of Biofield Treatment on 2, 4-Dihydroxybenzophenone Abstract Study background: 2,4-Dihydroxybenzophenone (DHBP) is an organic compound used for the synthesis of pharmaceutical agents. The objective of this study was to investigate the influence of biofield energy treatment on the physical, thermal and spectral properties of DHBP. The study was performed in two groups (control and treated). The control group remained as untreated, and the treated group received Mr. Trivedi’s biofield energy treatment. Methods: The control and treated DHBP samples were further characterized by X-ray diffraction (XRD), differential scanning calorimetry (DSC), thermogravimetric analysis (TGA), laser particle size analyser, surface area analyser, Fourier transform infrared (FT-IR) spectroscopy, and ultra violet-visible spectroscopy (UV-vis) analysis. Results: The XRD study indicated a slight decrease in the volume of the unit cell and molecular weight of treated DHBP as compared to the control sample. Introduction Materials and Methods Characterization Conclusions

Evaluation of Antibiogram, Genotype and Phylogenetic Analysis of Biofield Treated Nocardia otitidis Title: Evaluation of Antibiogram, Genotype and Phylogenetic Analysis of Biofield Treated Nocardia otitidis Publication: Biological Systems: Open Access Select license: Creative Commons Attributions-NonCommercial-ShareAlike Updated: November 21st, 2016 Abstract: Nocardiosis is a soil-borne aerobic infection caused by Nocardia species commonly affects the respiratory tract. Effect of Biofield Energy Treatment on Streptococcus group B: A Postpartum Pathogen | Open Access | OMICS International Abstract Streptococcus agalactiae group B (S. agalactiae gr. B) is widespread in nature mainly causes bacterial septicemia and neonatal meningitis. The current study was attempted to investigate the effect of biofield treatment on S. agalactiae gr.

Evaluation of the Impact of Biofield Treatment on Physical and Thermal Properties of Casein Enzyme Hydrolysate and Casein Yeast Peptone Abstract In the present study, the influence of biofield treatment on physical and thermal properties of Casein Enzyme Hydrolysate (CEH) and Casein Yeast Peptone (CYP) were investigated. The control and treated samples were characterized by Fourier transform infrared (FT-IR) spectroscopy, differential scanning calorimetry (DSC), Thermo Gravimetric Analysis (TGA), particle size and surface area analysis. The FTIR results revealed that biofield treatment has caused reduction of amide group (amide-I and amide-II) stretching vibration peak that is associated with strong intermolecular hydrogen bonding in treated CEH as compared to control. Keywords: Casein enzyme hydrolysate; Casein yeast peptone; Biofield treatment; FT-IR; TGA; DSC; Particle size and Surface area Introduction Over the last few decades, there has been continuous interest in biodegradable polymers for pharmaceutical and biomaterial applications [1]. Materials and Methods Characterization Results and Discussion FTIR spectroscopy:

The Effect of Biofield Energy on Thymol & Menthol. Abstract Thymol and menthol are naturally occurring plant derived compounds, which have excellent pharmaceutical and antimicrobial applications. The aim of this work was to evaluate the impact of biofield energy on physical and structural characteristics of thymol and menthol. Keywords: Thymol; Menthol; Biofield treatment; XRD; DSC; TGA; FT-IR Introduction Thymol is a volatile organic compound extracted from thyme and it has excellent antibacterial properties. Menthol is cyclic monoterpene alcohol, which is found as a main constituent in essential oil of Mentha candadensis L. Bioelectromagnetism is an area which studies the interaction of living biological cells and electromagnetic fields. Thus, human has the ability to harness the energy from environment or universe and can transmit into any leaving or nonliving objects around the globe. Experimental Materials and methods Thymol and menthol were procured from S D Fine Chemicals Limited, India. Characterization Results and discussion 1.

Related: