Physical, Thermal and Spectral Properties of Biofield Treated 1,2,3-Trimethoxybenzene Citation: Trivedi MK, Tallapragada RM, Branton A, Trivedi D, Nayak G, et al. (2015) Physical, Thermal and Spectral Properties of Bioeld Treated 1,2,3-Trimethoxybenzene. J Develop Drugs 4: 136. doi:10.4172/2329-6631.1000136 Page 7 of 8 Volume 4 • Issue 4 • 1000135 J Develop Drugs ISSN: 2329-6631 JDD an open access journal peaks as compared to the control. treatment may not aect the energy gap of highest occupied molecular orbital and lowest unoccupied molecular orbital (HOMO–LUMO gap). ough this was the rst attempt to investigate the impact of bioeld energy treatment on physicochemical properties of 1,2,3- trimethoxybenzene. to elucidate the exact mechanism of bioeld energy eect on physical, structural properties of the compound. techniques such as NMR, GC-MS, and TGA-FTIR will be used to get further detailed insights about the structural/thermal changes in the bioeld treated 1,2,3- trimethoxybenzene. Conclusions In summary, the XRD studies revealed the signicant increase to the control. 1. 2.
Biofield and its Effect on 1,2,3-Trimethoxybenzene | Bepress Description Study background: 1,2,3-Trimethoxybenzene is an important compound used for the synthesis of chemicals and pharmaceutical agents. The objective of this study was to investigate the influence of biofield energy treatment on the physical, thermal and spectral properties of 1,2,3-trimethoxybenzene. Methods: The study was performed by dividing the sample into two groups (control and treated). The control group remained as untreated, while the treated group received Mr Trivedi’s biofield energy treatment. Citation Information Trivedi MK, Tallapragada RM, Branton A, Trivedi D, Nayak G, et al. (2015) Physical, Thermal and Spectral Properties of Biofield Treated 1,2,3-Trimethoxybenzene.
Physical, Thermal and Spectral Properties of Biofield Treated 1,2,3-Trimethoxybenzene Abstract Study background: 1,2,3-Trimethoxybenzene is an important compound used for the synthesis of chemicals and pharmaceutical agents. The objective of this study was to investigate the influence of biofield energy treatment on the physical, thermal and spectral properties of 1,2,3-trimethoxybenzene. Methods: The study was performed by dividing the sample into two groups (control and treated). The control group remained as untreated, while the treated group received Mr Trivedi’s biofield energy treatment. Tables at a glance Figures at a glance
Mahendra Kumar Trivedi | Biography Mahendra Kumar Trivedi completed his Bachelor’s degree in Mechanical Engineering in 1985 and worked as an Engineer for 10 years. In 1995, Mr. Trivedi discovered that he has the unique ability to harness the energy from the universe and transmit it to anywhere on earth, infusing it into living organisms and nonliving materials to optimize their potential. With this ability, Mr. Trivedi is a natural healer. Physical, Thermal and Spectral Properties of Biofield Treated 1,2,3-Trimethoxybenzene Study background: 1,2,3-Trimethoxybenzene is an important compound used for the synthesis of chemicals and pharmaceutical agents. The objective of this study was to investigate the influence of biofield energy treatment on the physical, thermal and spectral properties of 1,2,3-trimethoxybenzene. Methods: The study was performed by dividing the sample into two groups (control and treated). The control group remained as untreated, while the treated group received Mr Trivedi’s biofield energy treatment. The control and treated 1,2,3-trimethoxybenzene samples were then characterized by X-ray diffraction (XRD), differential scanning calorimetry (DSC), thermogravimetric analysis (TGA), Fourier transform infrared (FT-IR) spectroscopy, and ultra violetvisible spectroscopy (UV-Vis) analysis. Results: XRD studies revealed the significant increase in crystallite size of treated sample by 45.96% as compared to the control sample.
Physical, Thermal and Spectral Properties of Biofield Treated 1,2,3-Trimethoxybenzene | Mahendra kumar Trivedi Study background: 1,2,3-Trimethoxybenzene is an important compound used for the synthesis of chemicals and pharmaceutical agents. The objective of this study was to investigate the influence of biofield energy treatment on the physical, thermal and spectral properties of 1,2,3-trimethoxybenzene. Methods: The study was performed by dividing the sample into two groups (control and treated). The control group remained as untreated, while the treated group received Mr Trivedi’s biofield energy treatment. The control and treated 1,2,3-trimethoxybenzene samples were then characterized by X-ray diffraction (XRD), differential scanning calorimetry (DSC), thermogravimetric analysis (TGA), Fourier transform infrared (FT-IR) spectroscopy, and ultra violetvisible spectroscopy (UV-Vis) analysis. Results: XRD studies revealed the significant increase in crystallite size of treated sample by 45.96% as compared to the control sample.
An Open Access Journal of Developing Drugs | Omicsgroup Mahendra Kumar Trivedi1, Rama Mohan Tallapragada1, Alice Branton1, Dahryn Trivedi1, Gopal Nayak2, Rakesh Kumar Mishra2 and Snehasis Jana2* 1Trivedi Global Inc., 10624 S Eastern Avenue Suite A-969, Henderson, NV 89052, USA 2Trivedi Science Research Laboratory Pvt. *Corresponding Author: Snehasis Jana Trivedi Science Research Laboratory Pvt. Received date: August 13, 2015; Accepted date: August 24, 2015; Published date August 28, 2015 Citation: Trivedi MK, Tallapragada RM, Branton A, Trivedi D, Nayak G, et al. (2015) Characterization of Physical, Thermal and Spectral Properties of Biofield Treated 2, 6-Diaminopyridine. Copyright: © 2015 Trivedi MK, et al. Visit for more related articles at Journal of Developing Drugs Abstract 2, 6-Diaminopyridine (2, 6-DAP) has extensive use in synthesis of pharmaceutical compounds. Keywords Abbreviation Introduction Diaminopyridine are important class of organic compounds, mostly used for synthesis of dyes, cosmetics, drugs and explosives. Materials and Methods
Publication meta - Physical, Thermal and Spectral Properties of Biofield Treated 1,2,3 Trimethoxybenzene Study background: 1,2,3-Trimethoxybenzene is an important compound used for the synthesis of chemicals and pharmaceutical agents. The objective of this study was to investigate the influence of biofield energy treatment on the physical, thermal and spectral properties of 1,2,3-trimethoxybenzene. Methods: The study was performed by dividing the sample into two groups (control and treated). The control group remained as untreated, while the treated group received Mr Trivedi’s biofield energy treatment. The control and treated 1,2,3-trimethoxybenzene samples were then characterized by X-ray diffraction (XRD), differential scanning calorimetry (DSC), thermogravimetric analysis (TGA), Fourier transform infrared (FT-IR) spectroscopy, and ultra violetvisible spectroscopy (UV-Vis) analysis.
Analytical Study of Para Chloro Benzonitrile Title: Physical, Thermal and Spectroscopic Studies of Biofield Treated p-Chlorobenzonitrile Publication: Science Journal of Chemistry Select license: Creative Commons Attributions-NonCommercial-ShareAlike 10.11648/j.sjc.20150306.11 Updated: November 21st, 2016 Abstract: Para-chlorobenzonitrile (p-CBN) is widely used as a chemical intermediate in the manufacturing of dyes, medicines, and pesticides, however; sometimes it may cause runaway reactions at high temperatures.