Assessment of Biotype Number of B. Cepacia Abstract Burkholderia cepacia (B. cepacia) is an opportunistic, Gram negative pathogen which causes infection mainly in immunocompromised population and associated with high rate of morbidity and mortality in cystic fibrosis patients. Aim of the present study was to analyze the impact of biofield treatment on multidrug resistant B. cepacia. Clinical sample of B. cepacia was divided into two groups i.e. control and biofield treated. The analysis was done after 10 days of treatment and compared with control group. Keywords: Burkholderia cepacia; Multidrug Resistant; Antimicrobial Susceptibility; Biofield Treatment; Biochemical Reactions; Biotyping Introduction Burkholderia cepacia (B. cepacia) is an important human pathogen, first isolated in cystic fibrosis patient and associated with serious health issues such as wound infection, bacteremia, catheter-related urinary infections and endocarditis [1]. Material and MethodsExperimental design and biofield treatment Biochemical reaction study 1.
Biofield Treatment on Yersinia enterocolitica | Trivedi Science Abstract Background: While spiritual and mental energies are known to man, their impact has never been scientifically measurable in the material world and they remain outside the domain of science. The present experiments on Yersinia enterocolitica [ATCC –23715], report the effects of such energy transmitted through a person, Mahendra Trivedi, which has produced an impact measurable in scientifically rigorous manner. Methods: Yersinia enterocolitica strains in revived and lyophilized state were subjected to spiritual energy transmitted through thought intervention and/or physical touch of Mahendra Trivedito the sealed tubes containing strain and were analyzed within 10 days after incubation. Results: The results indicated that Mahendra Trivedi‘s energy has changed 20 of 33 biochemical characteristics of Yersinia enterocolitica along with significant changes in susceptibility pattern in 15 of 32 antibiotics. Conclusions: Introduction Material and Methods Group I Treatment Group II MicroScan Setting
Biofield Treatment on Staphylococcus epidermis | Trivedi Science There Are Lots Of Exciting Things Happening Here At Trivedi Science. Enter Your Email Address In The Box Below Now To Stay Updated! Staphylococcus Epidermis [ATCC –13518] Abstract Purpose: While spiritual and mental energies are known to man, their impact has never been scientifically measurable in the material world and they remain outside the domain of science. Methods: Staphylococcus epidermis strains in revived and lyophilized state were subjected to spiritual energy transmitted through thought intervention and/or physical touch of Mahendra Trivedi to the sealed tubes containing strain, the process taking about 3 minutes and were analyzed within 10 days after incubation. Results: The results indicated that Mahendra Trivedi energy has changed 7 of 27 biochemical characteristics of Staphylococcus epidermis along with significant changes in susceptibility pattern in 8 of 29 antibiotics. Conclusions: Agriculture Publications Biotechnology Publication Materials Science Publications
Genotypic and Phylogenetic Analysis of Nocardia Otitidis Abstract Nocardiosis is a soil-borne aerobic infection caused by Nocardia species commonly affects the respiratory tract. Nocardia otitidis (N. otitidis) is the key organism for non-mycobacterial tuberculosis. The current study was attempted to investigate the effect of Mr. Trivedi’s biofield energy treatment on N. otitidis and analyzed for antimicrobial susceptibility pattern, minimum inhibitory concentration (MIC), DNA polymorphism by Random Amplified Polymorphic DNA (RAPD) and 16S rDNA sequencing. The strain of N. otitidis (ATCC 14630) was divided into two parts, control and treated. Keywords: Nocardia otitidis; Nocardiosis; Antimicrobial susceptibility; Biofield energy treatment; 16S rDNA sequencing; Random amplified polymorphic DNA The genus Nocardia is associated with the group of microorganisms known as the aerobic actinomycetes and belongs to the family of Mycobacteriaceae. Since 1940s, the sulfonamides have been the drugs of choice for the treatment of nocardiosis [11]. &nsbp;
Biofield Treatment on Enterococcus faecalis | Trivedi Science There Are Lots Of Exciting Things Happening Here At Trivedi Science. Enter Your Email Address In The Box Below Now To Stay Updated! Enterococcus Faecalis [ATCC – 51299] Abstract Background: While spiritual and mental energies are known to man, their impact has never been scientifically measurable in the material world and they remain outside the domain of science. Methods: Enterococcus faecalis strains in revived and lyophilized state were subjected to spiritual energy transmitted through thought intervention and/or physical touch of Mr. Results: The results indicated that Mr.Trivedi’s energy has changed 9 of 27 biochemical characteristics of Enterococcus faecalis along with significant changes in susceptibility pattern in 5 of 31 antibiotics. Conclusions: These results cannot be explained by current theories of science, and indicate a potency in Mr.Trivedi’s energy, providing a model for science to be able to investigate the impact of spiritual energy in a rigorous manner.
Biofield Treatment on Pseudomonas fluorescens | Trivedi Science Abstract Global emergence of Pseudomonas fluorescens (P. fluorescens) displays a mechanism of resistance to all existing antimicrobials. Due to its strong ability to acquire resistance, there is a need of some alternative treatment strategy. Objective of this study was to investigate the effect of biofield treatment on antimicrobial sensitivity pattern of P. fluorescens. Keywords: Pseudomonas fluorescens; Antibiotic Susceptibility; Biofield Treatment; Biochemical Reactions; Biotyping Introduction Pseudomonas fluorescens (P. fluorescens) is Gram negative, obligate aerobic, and considered as a psychrotrophic microorganism, unable to grow at temperatures above 32°C. Biofield is the name given to the electromagnetic field that permeates and surrounds living organisms. There are scanty reports on investigating biofield therapies against microbes. Material and methods Study Design Two ATCC samples (ATCC A and B) of P. fluorescens were grouped and subjected to biofield treatment. Results Discussion
Physical, Thermal and Structural Properties of Cadmium Abstract Cadmium is widely utilized in nickel-cadmium batteries, stabilizers, and coating applications due to its versatile physico-chemical properties. The aim of present study was to evaluate the impact of biofield treatment on atomic, thermal, and physical properties of cadmium powder. The cadmium powder was divided into two groups, one group as control and another group as treated. The treated group received Mr. Trivedi’s biofield treatment. Keywords: Biofield treatment; Cadmium; X-ray diffraction; Differential scanning calorimetry; Particle size; Surface area; Scanning electron microscopy Introduction Cadmium (Cd) element belongs to group IIB in the Periodic Table, which originally exists in Hexagonal Closed Packing (HCP) crystal structure. Experimental Cadmium powder used in present investigation was procured from Alpha Aesar, USA. X-ray diffraction analysis Crystallite size=k λ/ b Cosθ. Where, λ is the wavelength of x-ray (=1.54056 Å) and k is the equipment constant (=0.94). Conclusion
Characterization of Phenotype and Genotype of Biofield Treated Enterobacter aerogenes - Trivedi Science Abstract Enterobacter aerogenes (E. aerogenes) has been commonly described as a versatile opportunistic pathogen in hospital infections. The aim of the present work was to evaluate the impact of biofield treatment on E. aerogenes for its phenotypic and genotypic characteristics. E. aerogenes bearing ATCC 13048 (American Type Culture Collection) was procured from Bangalore Genei, in sealed pack and divided into control and treated groups. Treated group was subjected to Mr. Trivedi’s biofield treatment and analyzed for antimicrobial susceptibility, minimum inhibitory concentration (MIC), biochemical reactions, and biotype using automated MicroScan Walk-Away® system. Keywords: Enterobacter aerogenes, Biofield treatment; Phenotyping, Polymorphism; RAPD; 16S rDNA analysis Introduction Enterobacter aerogenes (E. aerogenes) is a common organism of most of the hospital-acquired infections. Biofield is the name given to the electromagnetic field that permeates and surrounds living organisms [7].
Antibiogram of Multidrug-Resistant Isolates of Pseudomonas aeruginosa after Biofield Treatment - Trivedi Science Abstract In recent years, prevalence of multidrug resistance (MDR) in Pseudomonas aeruginosa (P. aeruginosa) has been noticed with high morbidity and mortality. Aim of the present study was to determine the impact of Mr. Trivedi’s biofield treatment on MDR clinical lab isolates (LS) of P. aeruginosa. Keywords: Pseudomonas aeruginosa; Biofield treatment; Multidrug-resistant; Antimicrobial susceptibility; Biochemical reaction; Biotyping Introduction Antimicrobial agents are widely used therapeutic option against infections caused by pathogenic microbes. Despite of several advances in medical sciences, new generation antimicrobials against MDR strains of P. aeruginosa associated infections are still a serious challenge [9]. Materials and Methods Experimental design and biofield treatment MDR clinical lab isolates (i.e. Evaluation of antimicrobial susceptibility assay Biochemical study Identification by biotype number Results and Discussion Antimicrobial susceptibility pattern Conclusion References
Alteration in Escherichia Coli Antibiotic Sensitivity Pattern Abstract Study background: Multidrug resistant Escherichia coli (MDR E. coli) has become a major health concern, and failure of treatment leads to huge health burden. Aim of the present study was to determine the impact of Mr. Methods: Four MDR clinical lab isolates (LSs) of E. coli (LS 8, LS 9, LS 10, and LS 11) were taken and divided into two groups i.e. control and biofield treated. Results: Antimicrobial sensitivity assay showed 50% alteration in sensitivity of total tested antimicrobials in treated group of MDR E. coli isolates. Conclusion: Overall results suggest that Mr Trivedi’s biofield treatment has a significant effect on altering the antimicrobial sensitivity, biochemical reactions and biotype number of MDR isolates of E. coli. Keywords: Escherichia coli; Biofield treatment; Multidrug-resistant; Antimicrobial susceptibility; Biochemical reaction; Biotyping Abbreviations: Introduction Material and Methods Bacterial isolates, study design and biofield treatment Inoculum preparation
Antibiogram and Genotypic Analysis using 16S rDNA after Biofield Treatment on Morganella morganii - Trivedi Science Abstract Morganella morganii (M. morganii) is one of the important nosocomial pathogen associated with the urinary tract infections and bacteremia. The aim of this study was to evaluate the effect of Mr. Keywords: Morganella morganii; Antimicrobial susceptibility; Biofield energy; Biochemical reaction; Biotype; 16S rDNA analysis Abbreviations: NCCAM: National Center for Complementary and Alternative Medicine; ATCC: American Type Culture Collection; NBPC 30: Negative Breakpoint Combo 30; MIC: Minimum Inhibitory Concentration; OTUs: Operational Taxonomic Units; NCBI: National Center for Biotechnology Information; MEGA: Molecular Evolutionary Genetics Analysis; PCR: Polymerase Chain Reaction; RDP: Ribosomal Database Project Introduction Morganella species are the clinically characterized in the tribe Proteeae [1]. Biofield has been defined as “energy fields that purportedly surround and penetrate the human body”. Materials and Methods Inoculum preparation Experimental design 16S rDNA genotyping
Evaluation of Phenotyping and Genotyping Characterization of Serratia marcescens after Biofield Treatment - Trivedi Science Abstract Serratia marcescens (S. marcescens) is Gram-negative bacterium, associated with hospital-acquired infections (HAIs), especially urinary tract and wound infections. The present study was aimed to evaluate the impact of biofield treatment on phenotyping and genotyping characteristics such as antimicrobial susceptibility, biochemical reactions, biotype, DNA polymorphism, and phylogenetic relationship of S. marcescens (ATCC 13880). The lyophilized cells of S. marcescens were divided into three groups (G1, G2, and G3). Control group (G1) and treated groups (G2 and G3) of S. marcescens cells assessed with respect to antimicrobial susceptibility, and biochemical reactions. In addition to that, samples from different groups of S. marcescens were evaluated for DNA polymorphism by Random Amplified Polymorphic DNA (RAPD), and 16S rDNA sequencing in order to establish the phylogenetic relationship of S. marcescens with different bacterial species. Introduction Materials and Methods Results