Evaluation of Antibiogram, Genotype and Phylogenetic Analysis of Biofield Treated Nocardia otitidis - Trivedi Science Abstract Nocardiosis is a soil-borne aerobic infection caused by Nocardia species commonly affects the respiratory tract. Nocardia otitidis (N. otitidis) is the key organism for non-mycobacterial tuberculosis. Keywords: Nocardia otitidis; Nocardiosis; Antimicrobial susceptibility; Biofield energy treatment; 16S rDNA sequencing; Random amplified polymorphic DNA Abbreviations: NIH/NCCAM: National Institute of Health/ National Center for Complementary and Alternative Medicine; ATCC: American Type Culture Collection; MIC: Minimum Inhibitory Concentration; OTUs: Operational Taxonomic Units; NCBI: National Center for Biotechnology Information; MEGA: Molecular Evolutionary Genetics Analysis; PCR: Polymerase Chain Reaction; RDP: Ribosomal Database Project; RAPD: Random Amplified Polymorphic DNA; CNS: Central Nervous System The genus Nocardia is associated with the group of microorganisms known as the aerobic actinomycetes and belongs to the family of Mycobacteriaceae. Materials and Methods &nsbp;
The Potential Impact of Biofield Treatment on Human Brain Tumor Cells: A Time-Lapse Video Microscopy - Trivedi Science Abstract Study background: Glioblastoma (GBM) is the most common subtype of primary brain tumor in adults. The aim was to evaluate the impact of biofield treatment potential on human GBM and non-GBM brain cells using two time-lapse video microscopy technique. Methods: The human brain tumor, GBM cultured cells were divided into two groups viz. Results: GBM control cells showed a basal level of cell death 10 hours prior and 10 hours after the biofield treatment, and the rate remained unchanged over the 20 hours period, while in treatment group of GBM, cell death rate was exponentially increased (41%) after biofield treatment as compared to control. Figure 5: Percent change of cell death after 20 hours treatment period with respect to control. Conclusion: Altogether, data suggests that biofield treatment has significantly increased the cell death rate of treated GBM cells and simultaneously boost the viability of normal brain cells. Introduction Materials and Methods Results and Discussion 1.
Potential Impact of Biofield Energy Treatment on the Atomic, Physical and Thermal Properties Indium Powder Title: Potential Impact of Biofield Energy Treatment on the Atomic, Physical and Thermal Properties Indium Powder Publication: Material Science & Engineering Select license: Creative Commons Attributions-NonCommercial-ShareAlike Updated: November 22nd, 2016 Abstract: Indium has gained significant attention in the semiconductor industries due to its unique thermal and optical properties. Evaluation of Biofield Treatment on Physical and Structural Properties of Bronze Powder - Trivedi Science Abstract Bronze, a copper-tin alloy, widely utilizing in manufacturing of gears, bearing, and packing technologies due to its versatile physical, mechanical, and chemical properties. The aim of the present work was to evaluate the effect of biofield treatment on physical and structural properties of bronze powder. Bronze powder was divided into two samples, one served as control and the other sample was received biofield treatment. Control and treated bronze samples were characterized using x-ray diffraction (XRD), particle size analyzer, scanning electron microscopy (SEM), and Fourier transform infrared (FT-IR) spectroscopy. Keywords: Biofield treatment; Bronze; X-ray diffraction; FT-IR; Particle size; SEM Introduction Bronze is a metallic alloy, primarily consist of copper and tin in 90:10 ratio, which is also known as “true bronze”. Experimental Bronze powder was procured from Alfa Aesar, USA. X-ray diffraction study The crystallite size (G) was calculated by using formula: SEM analysis
Mahendra Trivedi Biofield Energy Effect on Cadmium Powder Abstract Cadmium is widely utilized in nickel-cadmium batteries, stabilizers, and coating applications due to its versatile physico-chemical properties. The aim of present study was to evaluate the impact of biofield treatment on atomic, thermal, and physical properties of cadmium powder. Keywords: Biofield treatment; Cadmium; X-ray diffraction; Differential scanning calorimetry; Particle size; Surface area; Scanning electron microscopy Introduction Cadmium (Cd) element belongs to group IIB in the Periodic Table, which originally exists in Hexagonal Closed Packing (HCP) crystal structure. Experimental Cadmium powder used in present investigation was procured from Alpha Aesar, USA. X-ray diffraction analysis XRD analysis of control and treated cadmium powder was performed using Phillips, Holland PW 1710 XRD diffractometer, which had a copper anode with nickel filter. Crystallite size=k λ/ b Cosθ. Where, λ is the wavelength of x-ray (=1.54056 Å) and k is the equipment constant (=0.94). 1.
Antibiogram Pattern of Shigella flexneri: Effect of BioField Treatment - Trivedi Science Abstract: Shigellosis is a major public health burden in India and its neighboring countries due to infection of Shigella species. The current study was attempted to investigate the effect of biofield treatment on Shigella flexneri (S. flexneri) with respect of antimicrobial susceptibility assay, biochemical characteristics and biotyping. Keywords: Shigella flexneri; Biofield treatment; Antimicrobial susceptibility; Minimum inhibitory concentration; Biochemical reaction; Biotype; Shigellosis Abbreviations: MIC: Minimum Inhibitory Concentration; ATCC: American Type Culture Collection; NBPC 30: Negative Breakpoint Combo 30; MSM: Men Who have Sex with Men; NICED: National Institute of Cholera and Enteric Diseases; CDC: Centers for Disease Control and Prevention Introduction Shigellosis (i.e. bacillary dysentery) is a major public health burden in developing countries. Materials and Methods Experimental design Two ATCC samples A (revived) and B (lyophilized) of S. flexneri were grouped (Gr.).
Antibiogram, Biochemical Reactions and Genotyping Characterization of Biofield Treated <i>Staphylococcus aureus</i> Antibiogram, Biochemical Reactions and Genotyping Characterization of Biofield Treated Staphylococcus aureus American Journal of BioScience Volume 3, Issue 6, November 2015, Pages: 212-220 Received: Sep. 19, 2015; Accepted: Sep. 30, 2015; Published: Oct. 16, 2015 Views 1954 Downloads 36 Authors Mahendra Kumar Trivedi, Trivedi Global Inc., Henderson, USA Alice Branton, Trivedi Global Inc., Henderson, USA Dahryn Trivedi, Trivedi Global Inc., Henderson, USA Gopal Nayak, Trivedi Global Inc., Henderson, USA Sambhu Charan Mondal, Trivedi Science Research Laboratory Pvt. Snehasis Jana, Trivedi Science Research Laboratory Pvt. Abstract Staphylococcus aureus (S. aureus) is the key organism for food poisoning due to massive production of heat stable exotoxins. Staphylococci, Staphylococcus aureus, Antimicrobial Sensitivity, Biofield Treatment, Biochemical Reaction, Biotype, 16S rDNA, Gram-Positive Bacteria Balaban N, Rasooly A (2000) Staphylococcal enterotoxins.
"Potential Impact of Biofield Energy Treatment on the Atomic, Physical Description Indium has gained significant attention in the semiconductor industries due to its unique thermal and optical properties. The objective of this research was to investigate the influence of the biofield energy treatment on the atomic, physical and thermal properties of the indium. The study was performed in two groups (control and treated). The control group remained as untreated, and treated group received Mr. Citation Information Mahendra Kumar Trivedi.
Biofield Treatment on Brass Powder | Trivedi Science Abstract Brass, a copper-zinc (Cu-Zn) alloy has gained extensive attention in industries due to its high corrosion resistance, machinability and strength to weight ratio. The aim of present study was to evaluate the effect of biofield treatment on structural and physical properties of brass powder. Keywords: Biofield treatment; Brass; X-ray diffraction; Fourier transform infrared; Particle size; Scanning electron microscopy Introduction Brass, an alloy mainly consist of copper (Cu) and zinc (Zn), is widely used in various industries because of their good formability, high corrosion resistance, strength to weight ratio, and ductility. The law of mass-energy inter-conversion has existed in the literature for more than 300 years for which first idea was given by Fritz, after that Einstein derived the well-known equation E=mc2 for light and mass [5,6]. Experimental Brass powder was procured from Alfa Aesar, USA. Particle size analysis X-ray diffraction study L = kλ/(bCosθ), FT-IR spectroscopy 1.