16S rDNA Analysis of Citrobacter Braakii Abstract Citrobacter braakii (C. braakii) is widespread in nature, mainly found in human urinary tract. The current study was attempted to investigate the effect of Mr. Trivedi’s biofield treatment on C. braakii in lyophilized as well as revived state for antimicrobial susceptibility pattern, biochemical characteristics, and biotype number. Lyophilized vial of ATCC strain of C. braakii was divided into two parts, Group (Gr.) Keywords: Citrobacter braakii; Antimicrobial susceptibility; Biofield treatment; Biochemical reaction; Biotype; 16S rDNA analysis; Gramnegative bacteria; Enterobacteriaceae Introduction Citrobacter braakii (C. braakii) is a genus of Gram-negative, straight, facultative anaerobic and motile bacilli bacterium widely distributed in water, soil, and food in the environment. Materials and Methods C. braakii, American Type Culture Collection (ATCC 43162) strain was procured from MicroBioLogics, Inc., USA and stored with proper storage conditions until further use. Gr.: Group
Characterization of Physical, Spectral and Thermal Properties of Biofield Treated 1,2,4-Triazole - Trivedi Science Abstract Triazoles are an important class of compounds used as core molecule for the synthesis of many pharmaceutical drugs. The objective of the present research was to investigate the influence of biofield treatment on physical, spectral and thermal properties of 1,2,4-triazole. The study was performed in two groups, control and treatment. Keywords: Biofield treatment; 1,2,4-Triazole; X-ray diffraction; Differential scanning calorimetry; Thermo gravimetric analysis; Surface area analyzer; Fourier transform infrared spectroscopy Abbreviations: XRD: X-Ray Diffraction; DSC: Differential Scanning Calorimetry; TGA: Thermo Gravimetric Analysis; FT-IR: Fourier Transform Infrared. Introduction Now-a-days research is focused towards the introduction of novel and biologically safe therapeutic agents. The chemical and physical stability of the pharmaceutical compounds are more desired quality attributes that directly affect its safety, efficacy, and shelf life [9]. Materials and Methods XRD study
Antibiogram, Biochemical Reactions and Genotyping Characterization of Biofield Treated Staphylococcus aureus - Trivedi Science Abstract Staphylococcus aureus (S. aureus) is the key organism for food poisoning due to massive production of heat stable exotoxins. The current study was attempted to investigate the effect of Mr. Trivedi’s biofield treatment on S. aureus. S. aureus (ATCC 25923) was divided into two parts, Group (Gr.) I: control and Gr. Keywords: Staphylococci, Staphylococcus aureus, Antimicrobial Sensitivity, Biofield Treatment, Biochemical Reaction, Biotype, 16S rDNA, Gram-Positive Bacteria 1. Staphylococci are the important class of pyogenic Grampositive spherical bacteria resembling to the grapes like structure. National Institute of Health/National Center for Complementary and Alternative Medicine (NIH/NCCAM) have reported that biofield (putative energy fields) or electromagnetic based energy therapies used to promote health and healing [8]. 2. 2.1. The impact of biofield treatment on tested bacterium S. aureus was evaluated in two groups- Group IIB – Study I Group IIB – Study II 2.2. 2.3. 2.4. 2.5.
Assessment of Pseudomonas Fluorescens Antibiotic Susceptibility Abstract Global emergence of Pseudomonas fluorescens (P. fluorescens) displays a mechanism of resistance to all existing antimicrobials. Due to its strong ability to acquire resistance, there is a need of some alternative treatment strategy. Objective of this study was to investigate the effect of biofield treatment on antimicrobial sensitivity pattern of P. fluorescens. P. fluorescens cells were procured from MicroBioLogics in sealed packs bearing the American Type Culture Collection (ATCC 49838) number. Keywords: Pseudomonas fluorescens; Antibiotic Susceptibility; Biofield Treatment; Biochemical Reactions; Biotyping Introduction Pseudomonas fluorescens (P. fluorescens) is Gram negative, obligate aerobic, and considered as a psychrotrophic microorganism, unable to grow at temperatures above 32°C. Biofield is the name given to the electromagnetic field that permeates and surrounds living organisms. There are scanty reports on investigating biofield therapies against microbes. Study Design
Evaluation of Physical, Thermal and Spectroscopic Properties of Biofield Treated p-Hydroxyacetophenone - Trivedi Science Abstract P-Hydroxyacetophenone (pHAP) is an aromatic ketone derivative that is mainly used in the manufacturing of various pharmaceuticals, flavours, fragrances, etc. In the present study, the impact of Mr. Trivedi’s biofield energy treatment was analysed on various properties of pHAP viz. crystallite size, surface area, melting temperature, thermal decomposition, and spectral properties. The pHAP sample was divided into two parts; one was kept as control sample while another part was named as treated sample. Keywords: Biofield energy treatment; p-Hydroxyacetophenone; X-ray diffraction; Surface area analysis; Thermogravimetric analysis;Ultraviolet-visible spectroscopy; Fourier transform infrared spectroscopy Abbreviations pHAP: para-Hydroxyacetophenone; XRD: X-ray diffraction; BET: Brunauer–Emmett–Teller; TGA/DTG: Thermogravimetric analysis/ Derivative thermogravimetry; FT-IR: Fourier transform infrared Introduction Materials and Methods Sample preparation G=kλ/ (bCosθ) Surface area analysis
Isotopic Abundance Analysis of Biofield Treated Benzene, Toluene and p-Xylene Using Gas Chromatography-Mass Spectrometry (GC-MS) - Trivedi Science Abstract Benzene, toluene and p-xylene are derivatives of benzene, generally produced from crude petroleum and have numerous applications in industry. The aim of the present study was to evaluate the impact of biofield treatment on isotopic abundance of these benzene derivatives by gas chromatography-mass spectrometry (GC-MS). Benzene, toluene and p-xylene samples were divided into two parts: control and treatment. Keywords: Biofield treatment; Benzene; Gas Chromatography-Mass Spectrometry; Toluene; p-xylene Abbreviations GC-MS: Gas chromatography-Mass spectrometry; PM: Primary molecule; PM+1: Isotopic molecule either for 13C/12C or 2H/1H Introduction Benzene, toluene and p-xylene isomers are nonpolar organic liquid, volatile, aromatic and the most important constituents of gasoline (Figure 1). Rate of chemical reaction depends on the mass of the nucleus, and isotopic substitutions slightly affect the partitioning of energy within molecules. Experimental Biofield treatment modalities 1.
S. Agalactiae-Antimicrobial Sensitivity, Biochemical Reactions & Bio Typing Abstract: Streptococcus agalactiae group B (S. agalactiae gr. B) is widespread in nature mainly causes bacterial septicemia and neonatal meningitis. The current study was attempted to investigate the effect of biofield treatment on S. agalactiae gr. Keywords: Streptococcus agalactiae group B; Biofield treatment; Minimum inhibitory concentration; Biochemical reaction; Biotype Abbreviations: CLSI: Clinical and laboratory standards institute; GBS: Group B Streptococci; CAMP: Christie-Atkins-Munch-Petersen; CDC: Centers for Disease Control and Prevention; ACOG: American College of Obstetricians and Gynecologists; AAP: American Academy of Pediatrics; MIC: Minimum inhibitory concentration; ATCC: American Type Culture Collection; PBPC 20: Positive Breakpoint Combo 20 Introduction Group B Streptococci (GBS), or Streptococcus agalactiae group B, are Gram-positive, non-spore forming, non-motile, β-hemolytic and chain-forming cocci bacteria. Materials and Methods Experimental design The Gr. Conclusion
Characterization of Physical and Thermal Properties of Biofield Treated Neopentyl Glycol - Trivedi Science Abstract Neopentyl glycol (NPG) has been extensively used as solid-solid phase change materials (PCMs) for thermal energy storage applications. The objective of the present study was to evaluate the impact of biofield treatment on physical, spectral and thermal properties of NPG. The study was performed in two groups (control and treated). The control group remained as untreated, and treatment group was subjected to Mr. Keywords: Neopentyl glycol; X-ray diffraction; Differential scanning calorimetry; Thermogravimetric analysis; Fourier transform infrared spectroscopy Abbreviations NPG: Neopentyl glycol; XRD: X-ray diffraction; DSC: Differential scanning calorimetry; TGA: Thermo gravimetric analysis; DTA:Differential thermal analysis; FT-IR: Fourier transform infrared;PCMs: Phase Change Materials; LTHS: Latent heat storage devices Introduction Recently polyalcohols have gained significant attention as PCMs. Materials and Methods Characterization G=kλ/ (bCosθ) Results and Discussion XRD Study 1.
Physical, Thermal and Spectroscopic Studies of Biofield Treated <i>p</i>-Chlorobenzonitrile Physical, Thermal and Spectroscopic Studies of Biofield Treated p-Chlorobenzonitrile Science Journal of Chemistry Volume 3, Issue 6, December 2015, Pages: 84-90 Received: Sep. 19, 2015; Accepted: Sep. 30, 2015; Published: Oct. 16, 2015 DOI: 10.11648/j.sjc.20150306.11 Views 557 Downloads 25 Authors Mahendra Kumar Trivedi, Trivedi Global Inc., Henderson, USA Alice Branton, Trivedi Global Inc., Henderson, USA Dahryn Trivedi, Trivedi Global Inc., Henderson, USA Gopal Nayak, Trivedi Global Inc., Henderson, USA Ragini Singh, Trivedi Science Research Laboratory Pvt. Snehasis Jana, Trivedi Science Research Laboratory Pvt. Abstract Para-chlorobenzonitrile (p-CBN) is widely used as a chemical intermediate in the manufacturing of dyes, medicines, and pesticides, however; sometimes it may cause runaway reactions at high temperatures. Biofield Energy Treatment, Para-Chlorobenzonitrile, X-ray Diffraction Study, Surface Area Analyzer, Differential Scanning Calorimetry, Thermogravimetric Analysis
Alteration in Biochemical Characteristics of Yersinia Enterocolitica Abstract Background: While spiritual and mental energies are known to man, their impact has never been scientifically measurable in the material world and they remain outside the domain of science. Methods: Yersinia enterocolitica strains in revived and lyophilized state were subjected to spiritual energy transmitted through thought intervention and/or physical touch of Mahendra Trivedito the sealed tubes containing strain and were analyzed within 10 days after incubation. Results: The results indicated that Mahendra Trivedi‘s energy has changed 20 of 33 biochemical characteristics of Yersinia enterocolitica along with significant changes in susceptibility pattern in 15 of 32 antibiotics. Conclusions: These results cannot be explained by current theories of science, and indicate a potency in Mahendra Trivedi energy, providing a model for science to be able to investigate the impact of spiritual energy in a rigorous manner. Introduction Material and Methods Group I Treatment Group II MicroScan 1.