background preloader

Biofield Treatment On Ceramic Oxide Nano Powders

Biofield Treatment On Ceramic Oxide Nano Powders
Abstract Transition metal oxides (TMOs) have been known for their extraordinary electrical and magnetic properties. In the present study, some transition metal oxides (Zinc oxide, iron oxide and copper oxide) which are widely used in the fabrication of electronic devices were selected and subjected to biofield treatment. The atomic and crystal structures of TMOs were carefully studied by Fourier transform infrared (FT-IR) spectroscopy and X-ray diffraction (XRD) studies. Keywords: Biofield treatment; Iron oxide; Copper Oxide; Zinc Oxide; X-ray diffraction; FT-IR Introduction Transition metal oxides (TMOs) exhibit fascinating properties such as piezoelectricity, ferroelectricity, nonlinear optical behaviour, wide band gap and high-TC superconductivity, which allows these metal oxides to use in electronic and optical device industries [1]. Experimental Procedure Here λ is the wavelength of x-radiation k is the equipment constant with a value 0.94. Results and DiscussionX-ray diffraction (XRD)

Impact of Biofield Treatment on Antimony Sulfide Abstract Antimony sulfide (Sb2S3) has gained extensive attention in solar cells due to their potential as a low-cost and earth abundant absorber material. In solar cell absorber, the optoelectrical properties such as energy band gap and absorption coefficient of Sb2S3 play an important role, which have strong relationships with their crystal structure, lattice parameter and crystallite size. Hence in the present investigation, Sb2S3 powder samples were exposed to biofield treatment, and further its physical, structural and spectral properties are investigated. Keywords: Biofield treatment; Antimony sulfide; X-ray diffraction; FT-IR; Particle size; Surface area; Scanning electron microscopy Introduction Antimony Sulfide (Sb2S3) is a semiconductor ceramics belonging to V-VI group of periodic table, which have high thermo-electric power and photosensitivity. In this paper, we report the impact of Biofield on Sb2S3 powder with respect to its structural, spectral and physical characteristics.

Material Research Innovations | Effect of Super Consciousness Energy | Trivedi Science Abstract Scientists are searching for eluding link between spirituality and science. Some believe fundamental essences of universe to be energy and information. As per current understanding energy and matter always co- existed and is considered one and the same. Energy is considered as ‘matter-inperpetual-motion’and matter as ‘stationary-energy’.Inter conversion between matter and energy has been defined by Einstein’s famous energy-mass equation (E=mc2) which has been proved by nuclear physicists using complex nuclear reactions involving high energy particles. However, many spiritual masters have claimed to realize this energy-matter inter conversion using their spiritual powers/energy but scientifically unknown and unverified. Keywords: Graphite, consciousness energy, Thought intervention, Diamonds, Activated charcoal, X-ray diffraction, Particle size, Atomic weight, Atomic charge, Crystallite size. Science and creation Matter, energy and information signals Experimental X-ray diffraction

Impact of Biofield Treatment on Pharmaceutical Compounds| Trivedi Science Abstract The stability of any pharmaceutical compound is most desired quality that determines its shelf life and effectiveness.The stability can be correlated to structural and bonding properties of compound and any variation arise in these properties can be easily determined by spectroscopic analysis. The present study was aimed to evaluate the impact of biofield treatment on these properties of four pharmaceutical compounds such as urea, thiourea, sodium carbonate,and magnesium sulphate, using spectroscopic analysis. Keywords: Urea; Thiourea; Sodium carbonate; Magnesium sulphate; Biofield treatment; Fourier transform infrared spectroscopy;Ultraviolet-visible spectroscopy Introduction Pharmaceutical industries are an important component of health care systems which are largely driven by scientific discovery and development of various chemical and biological agents for human and animal health. Sodium carbonate, commonly known as washing soda, is sodium salt of carbonic acid. Study design

Impact of Biofield Treatment on Growth of Lettuce and Tomato | Trivedi Science Abstract: Recent studies report the effect of biofield treatment on changes in structural characteristics of organic and inorganic matter, on cancer cells in vitro and on overall plant development. This study tested the impact of the same treatment applied to lettuce and tomato seeds and transplants (Lactuca sativa var. capitata and Lycopersiconesculentum var. Roma) in commercial plantings with and without fertilizers and pesticides, in relation to yield, quality, and pest inhibition. Keywords: Crop development; Biofield treatment; Fertilizer and Organic; Lettuce; Tomato Information-containing biofield energies have been postulated to be associated with living organisms and to affect their self-regulation processes (Rubik, 2002). Although science has earlier tested such energies in plants, in the above-mentioned studies the scientific facts to support such claimsare for the first time seeingreproducible and significant results in experimental observations. Treatment: Crop Parameters:

Effect of Biofield Treatment on Barium Titanate Powder Abstract Barium titanate, perovskite structure is known for its high dielectric constant and piezoelectric properties, which makes it interesting material for fabricating capacitors, transducer, actuator, and sensors. The perovskite crystal structure and lattice vibrations play a crucial role in its piezoelectric and ferroelectric behavior. In the present study, the barium titanate powder was subjected to biofield treatment. Further, the control and treated samples were characterized using X-ray diffraction (XRD) and Fourier transform infrared spectrometer (FT-IR) and Electron spin resonance (ESR). Keywords: Biofield treatment; Barium titanate; Fourier transform infrared; X-Ray diffraction; Electron spin resonance Introduction Piezoelectric materials are commonly used in optoelectronic industries in fabricating sensor, capacitor, and actuator owing to their piezoelectricity and wide range of dielectric constant. Materials and Methods Biofield treatment X-ray diffraction study Figure 1(a).

Biofield and Fungicide Seed Treatment Abstract Soybean production in Iowa USA is among the most productive for raínfed regions in the world. Despite generally having excellent soils, growing season temperatures and rainfall, soybean yields are decreased by weed interference and inadequate available soil water at key stages of crop development. A field study was conducted at two locations in lowa in 2012 to determine if seed-applied fungicide or biofield treatments influenced weed community, soil volumetric water concentration and soybean yield and quality. Application of biofield treatment resulted in lower density of tall waterhemp density, greater soybean stand density at R8 stage and greater seed pod-1 compared to the absence of seed fungicide and biofield­ Soil volumetric water content varied by seed fungicide x biofield x date interaction but differences were not consistent among treatment combinations. Download the original manuscript

The Potential Impact of Biofield Treatment on Human Brain Tumor Cells: A Time-Lapse Video Microscopy Abstract Study background: Glioblastoma (GBM) is the most common subtype of primary brain tumor in adults. The aim was to evaluate the impact of biofield treatment potential on human GBM and non-GBM brain cells using two time-lapse video microscopy technique. Methods: The human brain tumor, GBM cultured cells were divided into two groups viz. GBM control and GBM treatment. Similarly, human normal brain cultured cells (non-GBM) were taken and divided into two groups viz. non- GBM control and non-GBM treatment. Results: GBM control cells showed a basal level of cell death 10 hours prior and 10 hours after the biofield treatment, and the rate remained unchanged over the 20 hours period, while in treatment group of GBM, cell death rate was exponentially increased (41%) after biofield treatment as compared to control.

Atomic and Crystalline Characteristics of Zirconia and Silica Powders | Trivedi Science Abstract Zirconium oxide and silicon dioxide powders are selected and subjected to a non-contact Biofield energy known to be transmitted by Mahendra Kumar Trivedi. Particle sizes d50 and d99 showed up to 71.5 percent decrease indicating that the energy had caused deformation and fracture as if the powders have been subjected to high energy milling. This is also supported by increase in specific surface area up to 19.48 percent. In the present investigation Zirconium oxide and silicon dioxide powders are exposed to Bio-field. Keywords:Biofield energy; ZrO2; SiO2; X-ray methods Introduction It is known that electrical currents along with their associated magnetic fields are present in human bodies. Mr. Apart from atoms and molecules the next smallest sized materials available are powders. In the present investigation we report the effect of Biofield energy on oxide ceramic powders. Large quantities of zirconium oxide and silicon dioxide are used in powder form in opacifiers. Experimental

Characterization of Physical, Thermal and Spectral Properties of Biofield Treated O-Aminophenol Title: Characterization of Physical, Thermal and Spectral Properties of Biofield Treated O-Aminophenol Publication: Pharmaceutica Analytica Acta Select license: Creative Commons Attributions-NonCommercial-ShareAlike Updated: November 22nd, 2016 Abstract: O-aminophenol has extensive uses as a conducting material and in electrochemical devices. Evaluation of Phenotyping and Genotyping Characterization of Serratia marcescens after Biofield Treatment | Open Access | OMICS International Currently, many microorganisms have been acquired the resistance to number of antibiotics and other antimicrobial agents, which were effectively used earlier to cure a microbial infections. The antimicrobial resistant microbes (including bacteria, viruses, fungi, and parasites) can survive in antimicrobial drugs therapy. Therefore, regular treatments are ineffective. The relation between mass-energy was described Friedrich, then after Einstein gave the well-known equation E=mc2 for light and mass [4,5]. After consideration of clinical significance of S. marcescens and significant impact of biofield treatment on microbes, we felt a detailed investigation was required to evaluate the effect of biofield treatment on S. marcescens.

Impact of Biofield Treatment on Manganese (II, III) Oxide Abstract In Mn3O4, the crystal structure, dislocation density, particle size and spin of the electrons plays crucial role in modulating its magnetic properties. Present study investigates impact of Biofield treatment on physical and atomic properties of Mn3O4. X-ray diffraction revealed the significant effect of biofield on lattice parameter, unit cell volume, molecular weight, crystallite sizes and densities of treated Mn3O4. Keywords: Biofield treatment, Mn3O4, X-ray diffraction, FT-IR, Paramagnetic, ESR, Brunauer-Emmett-Teller analysis, Particle size analysis. Introduction Transition metal oxides (TMOs) constitute most interesting classes of solids, which exhibits different varieties of structures and properties [1]. Recently, magnetism and electrochemical properties in Mn3O4 nanoparticles are controlled by modulating the crystal structure by various processes such as annealing at high temperature [9], doping [10], hydrothermal [11], ultrasonic bath [12] and co-precipitation etc. 1.

Characterization of Physical, Thermal and Spectral Properties of Biofield Treated O-Aminophenol Open Access Research Article Pharmaceutica Analytica Acta h a r m c e u t i n l y Trivedi et al., Pharm Anal Acta 2015, 6:10 Volume 6 • Issue 10 • 1000425 Pharm Anal Acta ISSN: 2153-2435 PAA, an open access journal Abstract O-aminophenol has extensive uses as a conducting material and in electrochemical devices. of this research was to investigate the inuence of bioeld energy treatment on the physical thermal and spectral properties of o-aminophenol. while the treated group was subjected to Mr. treated o-aminophenol samples were characterized by X-ray diffraction (XRD), Differential scanning calorimetry (DSC), Thermogravimetric analysis (TGA), surface area analysis, Fourier transform infrared (FT-IR) spectroscopy, and Ultra violet-visible spectroscopy analysis (UV-vis). the treated o-aminophenol with respect to the control. was increased by 34.51% with respect to the control sample. temperature of the treated sample as compared to the control. bioeld treatment.

The Effect of Biofield Energy on Thymol & Menthol. Abstract Thymol and menthol are naturally occurring plant derived compounds, which have excellent pharmaceutical and antimicrobial applications. The aim of this work was to evaluate the impact of biofield energy on physical and structural characteristics of thymol and menthol. The control and biofield treated compounds (thymol and menthol) were characterized by X-ray diffraction (XRD), Differential Scanning Calorimetry (DSC), Thermogravimetric analysis (TGA), and Fourier Transform Infrared Spectroscopy (FT-IR). XRD study revealed increase in intensity of the XRD peaks of treated thymol, which was correlated to high crystallinity of the treated sample. The treated thymol showed significant increase in crystallite size by 50.01% as compared to control. Keywords: Thymol; Menthol; Biofield treatment; XRD; DSC; TGA; FT-IR Introduction Thymol is a volatile organic compound extracted from thyme and it has excellent antibacterial properties. Experimental Materials and methods Characterization 1.

Effect of Biofield Treatment on Boron Nitride Abstract Boron nitride (BN) is known for high hardness, thermal stability, thermal conductivity, and catalytic action. The aim of this study was to investigate the effect of biofield treatment on physical, structural and spectral properties of BN powder. The control and treated sample of BN powder were characterized by X-ray diffraction (XRD), surface area analysis and Fourier transform infrared spectroscopy (FT-IR). XRD results indicated that biofield treatment had substantially changed the crystallinity of BN powder as compared to control. Keywords: Biofield treatment; Boron nitride; X-ray diffraction; FT- IR; Surface area Introduction Boron nitride (BN) is a well-known ceramic material with fascinating properties, such as low density, high melting point, strength, corrosion resistance, and good chemical stability, excellent electrical and thermal properties. Nevertheless, the h-BN has similar crystal structure to graphite hence it is also known as white graphite [6,7]. Mr. Experimental

Related: