Biographie : Leonardo Fibonacci (1170 [Pise] - 1245 [Pise]) Leonard de Pise, plus connu sous le nom de Fibonacci, est le premier grand mathématicien de l'ère chrétienne du monde occidental. D'assez nombreux détails de sa jeunesse nous sont connus par les propos qu'il tient lui-même dans la préface d'un de ses livres, le Liber abaci. Né à Pise vers 1170, il rejoint très jeune son père à la colonie de Bujania, en Algérie, où ce dernier est responsable du bureau des douanes pour le compte de l'ordre des marchands de Pise. Voulant faire de son fils un marchand, il l'initie à l'art du calcul indo-arabe. Fibonacci vivait avant l'invention de l'imprimerie, ce qui signifiait que pour avoir plusieurs exemplaires du même ouvrage, il fallait le travail entièrement manuel d'un copiste. En ce début de XIII è s. règne sur l'Europe l'empereur Frédéric II, le plus cultivé des empereurs germaniques, avec de nombreux philosophes à sa cour. À compter de 1228, on ne connait qu'un seul document qui donne trace de la vie de Fibonacci.
Leonardo Fibonacci Un article de Wikipédia, l'encyclopédie libre. Leonardo Fibonacci Statue de Léonard de Pise, dans sa ville natale Leonardo Fibonacci (v. 1175 à Pise, Italie - v. 1250) est un mathématicien italien. Il avait, à l'époque, pour nom d'usage « Leonardo Pisano » (il est encore actuellement connu en français sous l'équivalent « Léonard de Pise »), et se surnommait parfois lui-même « Leonardo Bigollo » (bigollo signifiant « voyageur » en italien). Biographie[modifier | modifier le code] Né à Pise en Italie, son éducation s'est faite en grande partie à Béjaïa en Algérie, où son père Guilielmo Bonacci était le représentant des marchands de la république de Pise. Ayant aussi voyagé en Égypte, en Syrie, en Sicile, en Provence pour le compte de son père, et rencontré divers mathématiciens, Fibonacci en rapporta à Pise en 1198 les chiffres arabes et la notation algébrique (dont certains attribuent l'introduction à Gerbert d'Aurillac). De 1202 à 1225, il est occupé par ses différents ouvrages.
Suite de Fibonacci Un article de Wikipédia, l'encyclopédie libre. Elle doit son nom à Leonardo Fibonacci qui, dans un problème récréatif posé dans l'ouvrage Liber abaci publié en 1202, décrit la croissance d'une population de lapins : « Un homme met un couple de lapins dans un lieu isolé de tous les côtés par un mur. Combien de couples obtient-on en un an si chaque couple engendre tous les mois un nouveau couple à compter du troisième mois de son existence ? » Cette suite est fortement liée au nombre d'or, φ (phi). Croissance de population des lapins selon une suite de Fibonacci Présentation mathématique[modifier | modifier le code] Formule de récurrence[modifier | modifier le code] Le problème de Fibonacci est à l'origine de la suite dont le -ième terme correspond au nombre de paires de lapins au -ème mois. Notons le nombre de couples de lapins au début du mois . Dès le début du troisième mois, le couple de lapins a deux mois et il engendre un autre couple de lapins ; on note alors Plaçons-nous maintenant au mois
Suite de Fibonacci The Fibonacci Sequence is the series of numbers: The next number is found by adding up the two numbers before it. The 2 is found by adding the two numbers before it (1+1) Similarly, the 3 is found by adding the two numbers before it (1+2), And the 5 is (2+3), and so on! Example: the next number in the sequence above is 21+34 = 55 It is that simple! Here is a longer list: Can you figure out the next few numbers? Makes A Spiral When we make squares with those widths, we get a nice spiral: Do you see how the squares fit neatly together? The Rule The Fibonacci Sequence can be written as a "Rule" (see Sequences and Series). First, the terms are numbered from 0 onwards like this: So term number 6 is called x6 (which equals 8). So we can write the rule: The Rule is xn = xn-1 + xn-2 where: xn is term number "n" xn-1 is the previous term (n-1) xn-2 is the term before that (n-2) Example: term 9 is calculated like this: Golden Ratio And here is a surprise. Using The Golden Ratio to Calculate Fibonacci Numbers
Fibonacci Numbers, the Golden section and the Golden String Fibonacci Numbers and the Golden Section This is the Home page for Dr Ron Knott's multimedia web site on the Fibonacci numbers, the Golden section and the Golden string hosted by the Mathematics Department of the University of Surrey, UK. The Fibonacci numbers are The golden section numbers are 0·61803 39887... = phi = φ and 1·61803 39887... = Phi = Φ The golden string is 1 0 1 1 0 1 0 1 1 0 1 1 0 1 0 1 1 0 1 ... a sequence of 0s and 1s that is closely related to the Fibonacci numbers and the golden section. If you want a quick introduction then have a look at the first link on the Fibonacci numbers and where they appear in Nature. THIS PAGE is the Menu page linking to other pages at this site on the Fibonacci numbers and related topics above. Fibonacci Numbers and Golden sections in Nature Ron Knott was on Melvyn Bragg's In Our Time on BBC Radio 4, November 29, 2007 when we discussed The Fibonacci Numbers (45 minutes). listen again online or download the podcast. and phi . The Golden Section
Fibonacci number A tiling with squares whose side lengths are successive Fibonacci numbers In mathematics, the Fibonacci numbers or Fibonacci sequence are the numbers in the following integer sequence: or (often, in modern usage): (sequence A000045 in OEIS). The Fibonacci spiral: an approximation of the golden spiral created by drawing circular arcs connecting the opposite corners of squares in the Fibonacci tiling;[3] this one uses squares of sizes 1, 1, 2, 3, 5, 8, 13, 21, and 34. By definition, the first two numbers in the Fibonacci sequence are either 1 and 1, or 0 and 1, depending on the chosen starting point of the sequence, and each subsequent number is the sum of the previous two. In mathematical terms, the sequence Fn of Fibonacci numbers is defined by the recurrence relation with seed values or The Fibonacci sequence is named after Fibonacci. Fibonacci numbers are closely related to Lucas numbers in that they are a complementary pair of Lucas sequences. Origins[edit] List of Fibonacci numbers[edit] and
Codage de Fibonacci Un article de Wikipédia, l'encyclopédie libre. Le codage de Fibonacci est un codage entropique utilisé essentiellement en compression de données . Il utilise les nombres de la suite de Fibonacci , dont les termes ont la particularité d'être composés de la somme des deux termes consécutifs précédents, ce qui lui confère une robustesse aux erreurs. Le code de Fibonacci produit est un code préfixe et universel . Dans ce code, la séquence « 11 » apparaît uniquement en fin de chaque nombre encodé, et sert ainsi de délimiteur. Principe [ modifier ] Codage [ modifier ] Pour encoder un entier X : Créer un tableau avec 2 lignes. Exemple décomposition de 50. Les éléments de la 1 re ligne du tableau sont : 1 2 3 5 8 13 21 34 50 = 34 + 13 + 3 (50 = 34 + 8 + 5 + 3 est incorrect car le 13 n'a pas été utilisé) D'où le tableau : Il reste à écrire le codage du nombre 50 : 001001011 Décodage [ modifier ] Premier exemple Décoder le nombre 10001010011 On effectue la somme : 1 + 8 + 21 + 89 = 119 Deuxième exemple
The Fibonacci Numbers and Golden section in Nature - 1 This page has been split into TWO PARTS. This, the first, looks at the Fibonacci numbers and why they appear in various "family trees" and patterns of spirals of leaves and seeds. The second page then examines why the golden section is used by nature in some detail, including animations of growing plants. 0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377, 610, 987 ..More.. 1 Rabbits, Cows and Bees Family Trees Let's look first at the Rabbit Puzzle that Fibonacci wrote about and then at two adaptations of it to make it more realistic. 1.1 Fibonacci's Rabbits The original problem that Fibonacci investigated (in the year 1202) was about how fast rabbits could breed in ideal circumstances. Suppose a newly-born pair of rabbits, one male, one female, are put in a field. How many pairs will there be in one year? At the end of the first month, they mate, but there is still one only 1 pair. The number of pairs of rabbits in the field at the start of each month is 1, 1, 2, 3, 5, 8, 13, 21, 34, ...
Les retracements de Fibonacci : Analyse technique Vous avez surement un jour entendu parlé de la suite de Fibonacci, rappelez vous : 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144 …… Pour les obtenir c’est très simple. Vous additionnez les deux premiers chiffres pour calculer le 3eme. Ainsi 1+1=2 ;1+2=3 ;2+3=5… quelques souvenirs vous reviennent ? Venons en aux nombres d’or maintenant. Le nombre d’or est le rapport entre deux chiffres compris dans cette suite. Tout d’abord on calcule le ratio entre un nombre et son suivant par exemple, 89/144=0.618. Les retracements de Fibonacci : Parlons maintenant de ce pourquoi vous êtes venus, les niveaux de retracements de Fibonacci : 23,6%, 38,2%, 50,0%, 61.8%, 100%. - Une tendance haussière est marquée par des phases de corrections - Une tendance baissière est marquée par des phases de rebonds. Ce sont ces corrections ou rebonds qui sont appelés des retracements. Pour le retracement 38.2%, vous ferez le calcul suivant : 1.4110 - (0.0100 * 38.2%) = 1.4072.
Mineral Growth Spirals illustrating Phi Fibonacci numbers and Phi are related to spiral growth in nature If you sum the squares of any series of Fibonacci numbers, they will equal the last Fibonacci number used in the series times the next Fibonacci number. This property results in the Fibonacci spiral, based on the following progression and properties of the Fibonacci series: 12 + 12 + 22 + 32 + 52 = 5 x 8 12 + 12 + . . . + F(n)2 = F(n) x F(n+1) A Golden spiral is very similar to the Fibonacci spiral but is based on a series of identically proportioned golden rectangles, each having a golden ratio of 1.618 of the length of the long side to that of the short side of the rectangle: The Fibonacci spiral gets closer and closer to a Golden Spiral as it increases in size because of the ratio of each number in the Fibonacci series to the one before it converges on Phi, 1.618, as the series progresses (e.g., 1, 1, 2, 3, 5, 8 and 13 produce ratios of 1, 2, 1.5, 1.67, 1.6 and 1.625, respectively) Golden spiral in human ear Be Sociable.
Time and Quantum Physics relationships to Phi The Golden Ratio seems to be appearing in several places in the Quantum Physics Model. Because an electron has an electric charge and an intrinsic rotational motion, or spin, it behaves in some respects like a small bar magnet and is said to have a magnetic moment. Because the electron also has mass, it behaves in some respects like a spinning top, and is said to have spin angular momentum. The g factor of the electron is defined as the ratio of its magnetic moment to its spin angular momentum. Mathematically, the electron g-factor is approximately: gfactore = -2 / sin (Ø) and the proton g-factor is approximately: gfactorp = 2Ø / sin (1/Ø) Thus it appears that the Golden Ratio, or Phi, is a constant produced by time. The National Institute of Standards and Technology (NIST) states these gfactor constants as per the table below. Such constants are adjusted as new measuring techniques and better materials become available. Insights on this page were contributed by David W. Be Sociable.
Plug Flow Reactor - Free PPT downloads Plug Flow Model - Chmltech - Biodiesel Projects Multiphase Chemical Reactor Engineering Quak Foo Lee Ph.D. Candidate Chemical and Biological Engineering The University of British Columbia Different Types of Reactor Fixed Bed Rector Fluidized Bed Reactor Batch Reactor Straight Through Transport Reactor Slurry Phase Distillate Reactor Packed ... Gas-Solid Reactor Models - Chmltech - Biodiesel Projects ... fluidized beds The Packed Bed Reactor The flow and contacting can be simply represented by the plug flow model. ... Reactor Design ... Reactor Design - Chemical Engineering Department, University ... Reactor Design S,S&L Chapter 7 Terry A. Slide 1 * The chemical industry has some of the most easily-controllable processes in existence. Chapter 5a - CE 351 Chemical Reaction Engineering: Reactor Design Project PowerPoint Presentation Bioreactor Operation Modes-2. PowerPoint Presentation - No Slide Title - University of ... Production of Acrolein by the Partial Oxidation of Propylene ... ... ...
Complex numbers This is an introduction to complex numbers. It includes the mathematics and a little bit of history as well. It is intended for a general audience. The necessary background in a familiarity with ordinary real numbers (all positive and negative numbers and zero) and algebra. In one section some background in trigonometry is needed as indicated with the symbol. I. 1. Solution of quadratics, solution of cubics 2. 3. The Fundamental Theorem of Algebra proved! II. 4. Notation, arithmetic operations on C, parallelogram rule, addition as translation, negation and subtraction 5. The unit circle, the triangle inequality 6. Multiplication done algebraically, multiplying a complex number by a real number, multiplication and absolute value, powers of i, roots of unity, multiplying a complex number by i, a geometric interpretation of multiplication 7. 8. Reciprocals done geometrically, complex conjugates, division 9. Powers, roots, more roots of unity