Biofield | Impact on Properties of Aluminium Carbide Powder Volume 4 • Issue 1 • 1000142 J Aeronaut Aerospace Eng ISSN: 2168-9792 JAAE, an open access journal Open Access Research Article Aeronautics & Aerospace Engineering o u r n a l f e t i c s p g Trivedi et al., J Aeronaut Aerospace Eng 2015, 4:1 Keywords: Bioeld treatment; Aluminium carbide powder; X-ray diraction; Fourier transform infrared spectroscopy; Surface area Introduction Aluminium carbide (Al4C3) is known for its abrasive and creep resistance properties. aluminium with carbon in electric arc furnace [1]. role in production of some important structures such as diamond related structures, nanostructure carbons, and growth of diamonds on boron nitride etc. pressure and generates methane [2]. used as ne dispersion in aluminium alloy to strengthen the material. In aluminium matrix, Al4C3 particles increase the creep resistance, especially with silicon carbide, which is widely utilizing in automobile and aircra industries [3]. properties of Al4C3 powder. etc. [7].
Evaluation of XRD Analysis of Aluminium Carbide Description Aluminium carbide (Al4C3) has gained extensive attention due to its abrasive and creep resistance properties. Aim of the present study was to evaluate the impact of biofield treatment on physical and structural properties of Al4C3 powder. The Al4C3 powder was divided into two parts i.e. control and treated. Citation Information Trivedi MK, Tallapragada RM, Branton A, Trivedi D, Nayak G, et al. (2015) Characterization of Physical and Structural Properties of Aluminium Carbide Powder: Impact of Biofield Treatment.
Spectroscopic Characterization of Al4C3 Powder 0WordPress0CiteULike0 New Aluminium carbide (Al4C3) has gained extensive attention due to its abrasive and creep resistance properties. Aim of the present study was to evaluate the impact of biofield treatment on physical and structural properties of Al4C3 powder. The Al4C3 powder was divided into two parts i.e. control and treated. Control part was remained as untreated and treated part received biofield treatment. Your session has expired but don’t worry, your message has been saved.Please log in and we’ll bring you back to this page. Your evaluation is of great value to our authors and readers. Review When you're done, click "publish" Only blue fields are mandatory. Your mailing list is currently empty.It will build up as you send messagesand links to your peers. No one besides you has access to this list. Enter the e-mail addresses of your recipients in the box below. Your message has been sent. Description Subject : materials scienceArea : Materials ScienceLanguage : EnglishYear : 2015
Effect of Biofield Treatment on Klebsiella oxytoca Abstract Klebsiella oxytoca (K. oxytoca) is a Gram-negative microbe generally associated with community and hospital acquired infections. Due to its clinical significance, we evaluated the effect of biofield treatment on phenotype and biotype characteristics of K. oxytoca (ATCC 43165). Citation Information Mahendra Kumar Trivedi.
Assessment of Physical Properties of Aluminium Carbide Powder Title: Characterization of Physical and Structural Properties of Aluminium Carbide Powder: Impact of Biofield Treatment Publication: Aeronautics & Aerospace Engineering Select license: Creative Commons Attributions-NonCommercial-ShareAlike Updated: November 19th, 2016 Abstract: Aluminium carbide (Al4C3) has gained extensive attention due to its abrasive and creep resistance properties. Energy Treatment Impact on Antifungal Sensitivity Assay Abstract Fungi are the group of eukaryotic organisms such as yeast, mold, and mushrooms. The present work investigated the impact of biofield treatment on different pathogenic species of fungi in relation to antifungal sensitivity pattern. Each fungal sample was divided into three parts: C, control; T1, treatment (revived); T2 treatment (lyophilized). Treatment groups received the biofield treatment, and control group was remained as untreated. Mini-API ID32C strip employed for evaluation of antifungal sensitivity and minimum inhibitory concentration (MIC). Keywords: Fungi; Amphotericine B; Fluconazole; Flucytosine; Itraconazole Introduction The kingdom fungi includes yeast, mold, and mushrooms that have multiple applications like fermentation of sugar and bear; productions of antibiotics and enzymes; as biological pesticide; and also consumed as food products like mushrooms, morels, and truffles. Materials and Methods Biofield treatment Results Antifungal sensitivity Discussion Conclusion 1.
An Impact of Biofield Treatment on Klebsiella Oxytoca Citation: Trivedi MK, Patil S, Shettigar H, Bairwa K, Jana S (2015) Phenotypic and Biotypic Characterization of Klebsiella oxytoca: An Impact of Bioeld Treatment. J Microb Biochem Technol 7:4 202-205. doi:10.4172/1948-5948.1000204 Volume 7(4): 202-205 (2015) - 203 J Microb Biochem Technol ISSN: 1948-5948 JMBT, an open access journal Collection (ATCC) 43165] were procured from MicroBioLogics, Inc USA. till the further use. reactions patterns, and biotype number were evaluated on MicroScan Walk-Away® (Dade Behring Inc., West Sacramento, CA) using Negative Breakpoint Combo 30 (NBPC30) panel [19]. biochemicals used in the study were procured from Sigma-Aldrich. Study design e lyophilized cells of K. oxytoca were divided into three groups: C (control), T1 (treatment, revived) and T2 (treatment, lyophilized). e treatment groups (T1 and T2) were in sealed pack and handed over to Mr. Trivedi provided the treatment through his energy transmission process reactions, and biotype number. Results pattern S.
Quality of Beef Extract & Meat Infusion Powder- Energy Impact The present research work investigated the influence of bio-field treatment on two common flavoring agents used in food industries namely beef extract powder (BEP) and meat infusion powder (MIP). The treated powders were characterized by Fourier transform infrared spectroscopy (FT-IR), X-ray diffraction (XRD), particle size analysis, surface area analysis, differential scanning calorimetry (DSC), and thermogravimetric analysis (TGA). The FT-IR results showed disappearance of triglycerides peaks in both the treated powders as compared to control. XRD results corroborated the amorphous nature of both control and treated samples. The BEP showed enhanced average particle size (d50) and d99 (size exhibited by 99% of powder particles) by 5.7% and 16.1%, respectively as compared to control. Beef is known to have excellent nutritional value and it has been widely consumed in many countries. Coronory heart disease (CHD) is the main cause of death in western countries. Mr. Discussion Conclusion
Gluten Hydrolysate - Physical and Thermal Properties Modification Abstract The objective of present study was to study the effect of biofield treatment on physical and thermal properties of gluten hydrolysate (GH) and ipomoea macroelements (IM). The study was performed in two groups (control and treated). The control group remained as untreated, and biofield treatment was given to treated group. Keywords: Gluten hydrolysate; Ipomoea macroelements; Biofield treatment; Particle size; Surface area; XRD; DSC; TGA Abbreviations: GH: Gluten Hydrolysate; IM: Ipomoea Macroelements; XRD: X-ray Diffraction; DSC: Differential Scanning Calorimetry; TGA: Thermogravimetric Analysis Introduction According to latest estimate of International Grist Council, the total output of corn in the world has reached 863 million tons in 2012 and 2013. Researchers have demonstrated that short lived electrical events or action potential exists in several types of animal cells such as neurons, muscle, and endocrine cells [7]. Experimental Characterization Particle size analysis DSC study
Biofield and its Effect on Properties of Indole Title: Biofield Treatment: A Potential Strategy for Modification of Physical and Thermal Properties of Indole Publication: Environmental Analytical Chemistry Select license: Creative Commons Attributions-NonCommercial-ShareAlike Updated: November 19th, 2016 Abstract: Indole compounds are important class of therapeutic molecules, which have excellent pharmaceutical applications.
Chloramphenicol & Tetracycline - Spectroscopic Analysis Abstract Objective: Chloramphenicol and tetracycline are broad-spectrum antibiotics and widely used against variety of microbial infections. Nowadays, several microbes have acquired resistance to chloramphenicol and tetracycline. Methods:The study was performed in two groups (control and treatment) of each antibiotic. Results: FT-IR spectrum of treated chloramphenicol exhibited the decrease in wavenumber of NO2 from 1521 cm-1 to 1512 cm-1 and increase in wavenumber of C=O from 1681 cm-1 to 1694 cm-1 in acylamino group. Conclusion: Based on FT-IR spectroscopic data, it is speculated that due to increase in bond strength and conjugation effect after biofield treatment, the chemical stability of both the drugs might be increased as compared to control. Keywords:Chloramphenicol; Tetracycline; Biofield treatment;Fourier transform infrared spectroscopy; Ultraviolet spectroscopy Introduction: Materials and Methods Study design Results and Discussion UV-Vis spectroscopy Conclusion Acknowledgement 1.
Spectral Properties of Paracetamol - Biofield Energy Treatment Abstract Paracetamol and piroxicam are non-steroidal anti-inflammatory drugs (NSAIDs), widely used in pain and inflammatory diseases. The present study aimed to evaluate the impact of biofield treatment on spectral properties of paracetamol and piroxicam. The study was performed in two groups (control and treatment) of each drug. The control groups remained as untreated, and biofield treatment was given to treatment groups. Subsequently, spectral properties of both drugs before and after biofield treatment were characterized using FT-IR and UV-Vis spectroscopic techniques. Keywords: Paracetamol; Piroxicam; Biofield treatment; Fourier transform infrared spectroscopy; Ultraviolet spectroscopy Introduction Piroxicam is N-heterocyclic carboxamide of 1,2 benzothiazine 1,1 dioxide. Chemical stability of pharmaceutical drugs or active ingredients is a matter of great concern as it affects the safety, efficacy, as well as long-term stability or shelf life of drugs or drug products [9]. Mr. 1.