Thermal & Physical Properties of Silver Oxide Powder Abstract Silver oxide has gained significant attention due to its antimicrobial activities. The purpose of this study was to evaluate the impact of biofield energy treatment on the physical and thermal properties of silver oxide (Ag2O). The silver oxide powder was divided into two parts, one part was kept as control and another part was received Mr. Keywords: Silver Oxide, Biofield Energy Treatment, X-Ray Diffraction, Differential Scanning Calorimetry, Thermogravimetric Analysis, Fourier Transform Infrared Spectroscopy 1. Silver (Ag) is a naturally occurring ductile and malleable element. 2. Silver oxide powder was procured from Sigma Aldrich, USA. 2.1. The XRD analysis of control and treated silver oxide was performed on Phillips, Holland PW 1710 X-ray diffractometer system. The crystallite size (D) was calculated by using Scherrer equation as following: D = kλ/(bCosθ) Here, λ =1.54056 Å, b is full width half maximum (FWHM) of peaks and k is the equipment constant (=0.94). 2.2. 2.3. 3. 4.
Impact of Energy Treatment on Lithium Powder Abstract Lithium has gained extensive attention in medical science due to mood stabilizing activity. The objective of the present study was to evaluate the impact of biofield treatment on physical, atomic, and thermal properties of lithium powder. The lithium powder was divided into two parts i.e., control and treatment. Keywords: Biofield treatment; Lithium; X-ray diffraction; Differential scanning calorimetry; Thermogravimetric analysis-differential thermal analysis; Scanning electron microscopy; Fourier transform infrared spectroscopy Introduction Lithium is highly reactive, light metal, which is commonly found in various foods such as grains, vegetables, mustard, kelp, and fish blue corn etc. Harold Saton Burr had performed the detailed studies on the correlation of electric current with physiological process and concluded that every single process in the human body had an electrical significance [8]. used to measure the biofield of human body [11]. Materials and Methods G=kλ/(bCosθ),
Antimicrobial & Biotyping Analysis of Escherichia Coli Abstract Escherichia coli (E. coli) infections are the major health concern, as it causes infections in human mainly in urinary tract, ear, and wound infections. The present study evaluates the impact of biofield energy treatment on E. coli regarding antimicrobial sensitivity assay, biochemical study and biotype number. Keywords: Escherichia coli, Biofield Energy Treatment, Multidrug-Resistant, Antibiogram, Biochemical, Biotyping 1. Escherichia coli (E. coli) is a Gram-negative, rod shape, and facultative anaerobic pathogen linked with communityassociated as well as nosocomial infections. Alternative medicine remains alternative due to their serious challenges against mainstream biomedical paradigm, as it requires a new framework. Due to the clinical significance of E. coli, present work was designed to study the impact of biofield energy treatment on MDR isolates of E. coli with respect to its antimicrobials susceptibility, biochemical reactions pattern, and biotype number. 2. 2.1. 2.2.
Thiourea, Sodium Carbonate IR Spectrum Analysis Abstract The stability of any pharmaceutical compound is most desired quality that determines its shelf life and effectiveness.The stability can be correlated to structural and bonding properties of compound and any variation arise in these properties can be easily determined by spectroscopic analysis. The present study was aimed to evaluate the impact of biofield treatment on these properties of four pharmaceutical compounds such as urea, thiourea, sodium carbonate,and magnesium sulphate, using spectroscopic analysis. Each compound was divided into two groups, referred as control and treatment. Keywords: Urea; Thiourea; Sodium carbonate; Magnesium sulphate; Biofield treatment; Fourier transform infrared spectroscopy;Ultraviolet-visible spectroscopy Introduction Pharmaceutical industries are an important component of health care systems which are largely driven by scientific discovery and development of various chemical and biological agents for human and animal health. Study design 1.
Characterization of P-Chloro-M-Cresol Abstract p-Chloro-m-cresol (PCMC) is widely used in pharmaceutical industries as biocide and preservative. However, it faces the problems of solubility in water and photo degradation. The aim of present study was to evaluate the impact of biofield treatment on physical, thermal and spectral properties of PCMC. For this study, PCMC sample was divided into two groups i.e., one served as treated and other as control. Keywords: Biofield treatment; p-chloro-m-cresol; X-ray diffraction; Surface area analysis; Differential scanning calorimetry; Thermogravimetric analysis; Fourier transform infrared spectroscopy; Ultraviolet-visible spectroscopy; Gas chromatography-mass spectrometry Introduction p-Chloro-m-cresol (PCMC) which is also known as chlorocresol (Figure 1), is used as an external germicide and bactericide agent. Figure 1: Chemical structure of p-chloro-m-cresol. Materials and Methods Sample preparation P-chloro-m-cresol (PCMC) was procured from Sisco Research Laboratories, India. 1.
Energy Treatment and Shigella Sonnei Characteristics Abstract: Shigella sonnei (S. sonnei) is a non-motile, rod shape, clinically significant, Gram-negative bacterium. It is commonly associated with dysentery (shigellosis). Keywords: Antimicrobial susceptibility; Biofield treatment; 16S rDNA gene sequencing; Shigella sonnei Abbreviations: MIC: Minimum Inhibitory Concentration; ATCC: American Type Culture Collection; NBPC30: Negative Breakpoint Combo 30; NCBI: National Center for Biotechnology Information; WHO: World Health Organization; 16S rDNA: 16Svedberg Unit Ribosomal Deoxyribonucleic Acid; BLAST: Basic Local Alignment Search Tool; Outs: Operational Taxonomic Units Introduction Development of antimicrobial resistance in several microbes like bacteria, viruses, fungi, or in parasites has been reported globally in the recent few decades. Materials and Methods Two lyophilized vials of S. sonnei [American Type Culture Collection (ATCC) 9290] were purchased from MicroBioLogics, Inc., USA. Biofield treatment Biochemical studies Biotype number 1.
Physical, Spectral and Thermal Properties of Resorcinol Abstract Resorcinol is widely used in manufacturing of several drugs and pharmaceutical products that are mainly used for topical ailments. The main objective of this study is to use an alternative strategy i.e., biofield treatment to alter the physical, spectral and thermal properties of resorcinol. The resorcinol sample was divided in two groups, which served as control and treated group. The treated group was given biofield treatment and both groups i.e., control and treated were analysed using X-ray diffraction (XRD), Fourier transform-infrared (FT-IR) spectroscopy, UV-Visible (UVVis) spectroscopy, Differential scanning calorimetry (DSC) and Thermogravimetric analysis (TGA). Keywords: Resorcinol; Biofield energy treatment; X-Ray diffraction; Fourier transform infrared spectroscopy; Ultraviolet-Visible spectroscopy; Differential scanning calorimetry; Thermogravimetric analysis Abbreviations Introduction Materials and Methods Study design Resorcinol was procured from Loba Chemie Pvt. 1.
Study of Multidrug Resistant Strain of K. Oxytoca Abstract Klebsiella are opportunistic pathogens that cause a wide spectrum of severe diseases. The aim of the present study was to investigate the impact of biofield treatment on multidrug resistant strain of K. oxytoca with respect to antibiogram pattern along with biochemical study and biotype number. Clinical lab isolate of K. oxytoca was divided into two groups i.e. control and treated. Control group remain untreated and treated group was subjected to Mr. Trivedi’s biofield. Keywords: Klebsiella oxytoca ; Multidrug resistant; Antibiogram; Biofield treatment; Biochemical reactions; Biotyping Introduction Klebsiella oxytoca (K. oxytoca) is a Gram-negative pathogen, cylindrical rod shaped, non-motile in nature, and belongs to Enterobacteriaceae family. Biofield is a cumulative outcome of electric and magnetic field energy, exerted by the human body. Materials and Methods Experimental design and biofield treatment Evaluation of antimicrobial susceptibility assay Biochemical reaction study 1.
Physical, Thermal & Spectral Properties of Butylated Hydroxytoluene Abstract The antioxidants play an important role in the preservation of foods and the management of oxidative stress related diseases by acting on reactive oxygen species and free radicals. However, their use in high temperature processed food and pharmaceuticals are limited due to its low thermal stability. The objective of the study was to use the biofield energy treatment on butylated hydroxytoluene (BHT) i.e. antioxidant and analyse its impact on the physical, thermal, and spectral properties of BHT. For the study, the sample was divided into two groups and termed as control and treated. The treated group was subjected to biofield energy treatment. Keywords: Biofield energy treatment; Butylated hydroxytoluene; Reactive oxygen species; Complementary and alternative medicine; Thermogravimetric analysis Introduction Figure 1: Chemical structure of butylated hydroxytoluene. In food preservation process, the thermal stability of antioxidant is very crucial. Materials and Methods DSC analysis