background preloader

Improved Susceptibility Pattern of Raoultella Ornithinolytica

Improved Susceptibility Pattern of Raoultella Ornithinolytica

Citrobacter Braakii – Study of Biochemical Characteristics Abstract Citrobacter braakii (C. braakii) is widespread in nature, mainly found in human urinary tract. The current study was attempted to investigate the effect of Mr. Trivedi’s biofield treatment on C. braakii in lyophilized as well as revived state for antimicrobial susceptibility pattern, biochemical characteristics, and biotype number. Keywords: Citrobacter braakii; Antimicrobial susceptibility; Biofield treatment; Biochemical reaction; Biotype; 16S rDNA analysis; Gramnegative bacteria; Enterobacteriaceae Abbreviations: MDR: Multi-Drug Resistant;ATCC: American Type Culture Collection; NBPC 30: Negative Breakpoint Combo 30; MIC: Minimum Inhibitory Concentration; OTUs: Operational Taxonomic Units; NCBI: National Center for Biotechnology Information; MEGA: Molecular Evolutionary Genetics Analysis; PCR: Polymerase Chain Reaction; RDP: Ribosomal Database Project; HBMEC: Human Brain Microvascular Endothelial Cells . Introduction Materials and Methods Experimental design Group IIB – Study I 1.

16s rDNA Sequencing of Human Energy Treated C. Braakii Title: Phenotyping and 16S rDNA Analysis after Biofield Treatment on Citrobacter braakii: A Urinary Pathogen Publication: Journal of Clinical & Medical Genomics Select license: Creative Commons Attributions-NonCommercial-ShareAlike Updated: November 21st, 2016 Abstract: Citrobacter braakii (C. braakii) is widespread in nature, mainly found in human urinary tract. Biofield Impact on Biotype Number of R. Ornithinolytica Description Raoultella ornithinolytica is belongs to the family of Enterobacteriaceae, a Gram-negative encapsulated aerobic bacillus associated with bacteremia and urinary tract infections. As biofield therapy is increasingly popular in biomedical heath care, so present study aimed to evaluate the impact of Mr. Citation Information Mahendra Kumar Trivedi.

Mahendra Trivedi on iScience About Mahendra T­rivedi ear­ned his 5-­year Bache­lor’s degr­ee in Mech­anical Eng­ineering i­n 1985 and­ worked as­ an Engine­er for 10 ­years. In­ 1995, Mr.­ Trivedi d­iscovered ­that he ha­d the uniq­ue ability­ to harnes­s the ener­gy from th­e universe­ and trans­mit it to ­anywhere o­n the glob­e, infusin­g it into ­living org­anisms and­ nonliving­ materials­, thus opt­imizing th­eir potent­ial. Research Although M­r. He amassed­ a collect­ion of ove­r 4,000 sc­ientific s­tudies in ­many life ­sciences a­nd materia­l sciences­, includin­g: agricul­ture, live­stock, bio­technology­, microbio­logy, mate­rials scie­nce, genet­ics, cance­r and huma­n health a­nd has sev­eral dozen­s of publi­cations in­ leading i­nternation­al peer-re­viewed sci­entific jo­urnals, al­l in suppo­rt to the ­dramatic r­esults rep­orted thro­ugh human ­testimonia­ls, thus e­xcluding t­he possibi­lity of th­e placebo ­effect. Mr. Mr. You can re­ad more ab­out Mr. 1). 2). 3). 4). 5). 6). 7). 8). 9).

Study of Biochemical Characteristics of Citrobacter Braakii Research Article Open Access Trivedi et al., J Clin Med Genom 2015, 3:1 Volume 3 • Issue 1 • 1000129 J Clin Med Genom ISSN: IJGM, an open access journal Journal of Clinical & Medical Genomics Keywords: Citrobacter braakii; Antimicrobial susceptibility; Bioeld treatment; Biochemical reaction; Biotype; 16S rDNA analysis; Gram- negative bacteria; Enterobacteriaceae Abbreviations: MDR: Multi-Drug Resistant; ATCC: American Type Culture Collection; NBPC 30: Negative Breakpoint Combo 30; MIC: Minimum Inhibitory Concentration; OTUs: Operational Taxonomic Units; NCBI: National Center for Biotechnology Information; MEGA: Molecular Evolutionary Genetics Analysis; PCR: Polymerase Chain Reaction; RDP: Ribosomal Database Project; HBMEC: Human Brain Microvascular Endothelial Cells Introduction Citrobacter braakii (C. braakii) is a genus of Gram-negative, straight, facultative anaerobic and motile bacilli bacterium widely distributed in water, soil, and food in the environment.

Phenotyping Analysis of Citrobacter Braakii after Biofield Treatment Description Citrobacter braakii (C. braakii) is widespread in nature, mainly found in human urinary tract. The current study was attempted to investigate the effect of Mr. Trivedi’s biofield treatment on C. braakii in lyophilized as well as revived state for antimicrobial susceptibility pattern, biochemical characteristics, and biotype number. Lyophilized vial of ATCC strain of C. braakii was divided into two parts, Group (Gr.) I: control and Gr. Citation Information Trivedi MK, Branton A, Trivedi D, Nayak G, Charan S, et al. (2015) Phenotyping and 16S rDNA Analysis after Biofield Treatment on Citrobacter braakii: A Urinary Pathogen.

Spectroscopic Analysis of P-Chloro Benzonitrile: Impact of Human Energy Description Para-chlorobenzonitrile (p-CBN) is widely used as a chemical intermediate in the manufacturing of dyes, medicines, and pesticides, however; sometimes it may cause runaway reactions at high temperatures. The current study was designed to evaluate the impact of biofield energy treatment on the physical, thermal, and spectroscopic properties of p-CBN. The analysis was done by dividing the p-CBN samples into two groups that served as control and treated. The treated group received Mr. Citation Information Mahendra Kumar Trivedi, Alice Branton, Dahryn Trivedi, Gopal Nayak, Ragini Singh, Snehasis Jana.

Analytical Study of Para Chloro Benzonitrile Title: Physical, Thermal and Spectroscopic Studies of Biofield Treated p-Chlorobenzonitrile Publication: Science Journal of Chemistry Select license: Creative Commons Attributions-NonCommercial-ShareAlike 10.11648/j.sjc.20150306.11 Updated: November 21st, 2016 Abstract: Para-chlorobenzonitrile (p-CBN) is widely used as a chemical intermediate in the manufacturing of dyes, medicines, and pesticides, however; sometimes it may cause runaway reactions at high temperatures.

Antimicrobial Susceptibility Testing of Burkholderia Cepacia Abstract Burkholderia cepacia (B. cepacia) is an opportunistic, Gram negative pathogen which causes infection mainly in immunocompromised population and associated with high rate of morbidity and mortality in cystic fibrosis patients. Aim of the present study was to analyze the impact of biofield treatment on multidrug resistant B. cepacia. Clinical sample of B. cepacia was divided into two groups i.e. control and biofield treated. Citation Information Mahendra Kumar Trivedi. Burkholderia Cepacia Antimicrobial Susceptibility Testing An Effect of Biofield Treatment on Multidrug-resistant Burkholderia cepacia: A Multihost Pathogen Mahendra Kumar Trivedi , Shrikant Patil , Harish Shettigar , Mayank Gangwar , Snehasis Jana Trivedi Global Inc., 10624 S Eastern Avenue Suite A-969, Henderson, NV 89052, USA Trivedi Science Research Laboratory Pvt. Corresponding author: Snehasis Jana, Trivedi Science Research Laboratory Pvt. 462026, Madhya Pradesh, India, Tel: +91-755-6660006; E-mail: publication@trivedisrl.com Rec date: Jun 29, 2015, Acc date: Jul 10, 2015, Pub date: Jul 17, 2015 Copyright: © 2015 Jana S et al. distribution, and reproduction in any medium, provided the original author and source are credited. Abstract Burkholderia cepacia (B. cepacia) is an opportunistic, Gram negative pathogen which causes infection mainly in immunocompromised population and associated with high rate of morbidity and mortality in cystic fibrosis patients. sample of B. cepacia was divided into two groups i.e. control and biofield treated. tazobactam.

Mahendra Kumar Trivedi | Biography Mahendra Kumar Trivedi completed his Bachelor’s degree in Mechanical Engineering in 1985 and worked as an Engineer for 10 years. In 1995, Mr. Trivedi discovered that he has the unique ability to harness the energy from the universe and transmit it to anywhere on earth, infusing it into living organisms and nonliving materials to optimize their potential. Human Energy Treatment of 1,2,3 Trimethoxybenzene Citation: Trivedi MK, Tallapragada RM, Branton A, Trivedi D, Nayak G, et al. (2015) Physical, Thermal and Spectral Properties of Bioeld Treated 1,2,3-Trimethoxybenzene. J Develop Drugs 4: 136. doi:10.4172/2329-6631.1000136 Page 7 of 8 Volume 4 • Issue 4 • 1000135 J Develop Drugs ISSN: 2329-6631 JDD an open access journal peaks as compared to the control. treatment may not aect the energy gap of highest occupied molecular orbital and lowest unoccupied molecular orbital (HOMO–LUMO gap). ough this was the rst attempt to investigate the impact of bioeld energy treatment on physicochemical properties of 1,2,3- trimethoxybenzene. to elucidate the exact mechanism of bioeld energy eect on physical, structural properties of the compound. techniques such as NMR, GC-MS, and TGA-FTIR will be used to get further detailed insights about the structural/thermal changes in the bioeld treated 1,2,3- trimethoxybenzene. Conclusions In summary, the XRD studies revealed the signicant increase to the control. 1. 2.

Characterization of Physical and Structural Properties of Brass Powder Title: Characterization of Physical and Structural Properties of Brass Powder After Biofield Treatment Publication: Powder Metallurgy & Mining Select license: Creative Commons Attributions-NonCommercial-ShareAlike Updated: November 19th, 2016 Abstract: Brass, a copper-zinc (Cu-Zn) alloy has gained extensive attention in industries due to its high corrosion resistance, machinability and strength to weight ratio. Human Energy Treatment of Brass Powder & X-Ray Diffraction Analysis 0WordPress0CiteULike0 New Brass, a copper-zinc (Cu-Zn) alloy has gained extensive attention in industries due to its high corrosion resistance, machinability and strength to weight ratio. The aim of present study was to evaluate the effect of biofield treatment on structural and physical properties of brass powder. The brass powder sample was divided into two parts: control and treated. The treated part was subjected to Mr.Trivedi’s biofield treatment. Your session has expired but don’t worry, your message has been saved.Please log in and we’ll bring you back to this page. Your evaluation is of great value to our authors and readers. Review When you're done, click "publish" Only blue fields are mandatory. Your mailing list is currently empty.It will build up as you send messagesand links to your peers. No one besides you has access to this list. Enter the e-mail addresses of your recipients in the box below. Your message has been sent. Description Leave a comment Your comment

Related: