Polylactic acid
Poly(lactic acid) or polylactide (PLA) is a thermoplastic aliphatic polyester derived from renewable resources, such as corn starch (in the United States), tapioca roots, chips or starch (mostly in Asia), or sugarcane (in the rest of the world). In 2010, PLA had the second highest consumption volume of any bioplastic of the world.[3] The name "poly(lactic acid)" does not comply with IUPAC standard nomenclature, and is potentially ambiguous or confusing, because PLA is not a polyacid (polyelectrolyte), but rather a polyester.[4] Production[edit] There are several industrial routes to usable (i.e. high molecular weight) PLA. Another route to PLA is the direct condensation of lactic acid monomers. Polymerization of a racemic mixture of L- and D-lactides usually leads to the synthesis of poly-DL-lactide (PDLLA), which is amorphous. Manufacturers[edit] As of June 2010, NatureWorks was the primary producer of PLA (bioplastic) in the United States. Chemical and physical properties[edit]
Mix it Up !
Now that you have gathered all the necessary materials and ingredients, its time to mix up a batch of potato plastic. A note to younger viewers: be sure to have a parent with you when using the stove, I don't want you to burn down your house because of this instructable! Also, beware of the starch plastic resin when you are pouring it into a mold, it is very hot and will burn you if it gets on your skin, you can never be too cautious with boiling hot substances.
Shapeways
Inspired by Mendel Heit, Martin Bauer and Jay Cousins we've been doing a lot of playing around with bioplastics. Here you can see the original post with a video that shows you how they made bioplastic. Additionally this video is quite helpful. So why have I been spending every minute of my free time cooking bioplastic? Basically the idea is: make a biodegradable plastic in your own home. Theoretically home made bioplastics could be of great benefit to hobbyists and hardware hackers.
Related:
Related: