Properties of Salmonella paratyphi A after Biofield Therapy
Enteric fever is a major global problem. Emergence of antimicrobial resistance threatens to render current treatments ineffective. The current study was attempted to investigate the effect of biofield treatment on Salmonella paratyphi A (S. paratyphi A) in terms of antimicrobial susceptibility assay, biochemical characteristics and biotyping. S. paratyphi A strain were procured from MicroBioLogics in sealed packs bearing the American Type Culture Collection (ATCC 9150). The study was conducted in revived and lyophilized state of S. paratyphi A. Both revived (Group; Gr.
Biofield Treatment | An Experimental Study on Serratia marcescens
Serratia marcescens (S. marcescens) is Gram-negative bacterium, associated with hospital-acquired infections (HAIs), especially urinary tract and wound infections. The present study was aimed to evaluate the impact of biofield treatment on phenotyping and genotyping characteristics such as antimicrobial susceptibility, biochemical reactions, biotype, DNA polymorphism, and phylogenetic relationship of S. marcescens (ATCC 13880). The lyophilized cells of S. marcescens were divided into three groups (G1, G2, and G3).
Biofield | Molecular Pharmaceutics & Organic Process Research
Triazoles are an important class of compounds used as core molecule for the synthesis of many pharmaceutical drugs. The objective of the present research was to investigate the influence of biofield treatment on physical, spectral and thermal properties of 1,2,4-triazole. The study was performed in two groups, control and treatment.
Analysis of Morganella morganii after Biofield Energy Treatment
Morganella morganii (M. morganii) is one of the important nosocomial pathogen associated with the urinary tract infections and bacteremia. The aim of this study was to evaluate the effect of Mr. Trivedi’s biofield energy treatment on M. morganii in the lyophilized as well as revived state for antimicrobial susceptibility pattern, biochemical characteristics, biotype number and genotype.
Characterization of Biofield Energy Treated Imidazole Derivatives
Imidazole derivatives have attracted significant interests in recent time for their usefulness in synthetic heterocyclic chemistry, analytical chemistry and pharmacology. Aim of present study was to evaluate the impact of biofield treatment on two imidazole derivatives (i.e., imidazole and 2-methylimidazole) by various analytical methods. The biofield treatment was done by Mr. Trivedi on both the compounds and both control and treated samples of imidazole and 2-methylimidazole were characterized with respect to physical, and structural properties using X-ray diffraction (XRD), differential scanning calorimetry (DSC), thermogravimetric analysis (TGA), Fourier transform infrared (FT- IR), ultraviolet-visible (UV-Vis) spectroscopy, and Gas chromatography-Mass spectrometry (GC-MS). X-ray diffraction study revealed that crystallite size varied in a different way for imidazole and 2-methylimidazole due to the presence of methyl group in 2-c position although their core was same.
Biofield Treatment | Characterization of Barium Oxide and Zinc Sulfide
Barium oxide (BaO) and zinc sulfide (ZnS) are well known for their applications in electrical, optical and chemical industries. The present study was aimed to evaluate the impact of biofield treatment on the structural and physical properties of BaO and ZnS powder. The study was carried out in two groups, one was set to control, and another group was subjected to Mr. Trivedi’s biofield treatment.
Biofield Treatment | Physical and Chemical Properties of Bronze Powder
Bronze, a copper-tin alloy, widely utilizing in manufacturing of gears, bearing, and packing technologies due to its versatile physical, mechanical, and chemical properties. The aim of the present work was to evaluate the effect of biofield treatment on physical and structural properties of bronze powder. Bronze powder was divided into two samples, one served as control and the other sample was received biofield treatment. Control and treated bronze samples were characterized using x-ray diffraction (XRD), particle size analyzer, scanning electron microscopy (SEM), and Fourier transform infrared (FT-IR) spectroscopy. XRD result showed that the unit cell volume was reduced upto 0.78% on day 78 in treated bronze as compared to control. Further, the crystallite size was significantly reduced upto 49.96% in treated bronze sample on day 106 as compared to control.
Improve Stainless Steel Powder Properties after Biofield Treatment
Stainless steel (SS) has gained extensive attention due to its high corrosion resistance, low maintenance, familiar lustre, and superior mechanical properties. In SS, the mechanical properties are closely related with crystal structure, crystallite size, and lattice strain. The aim of present study was to evaluate the effect of biofield treatment on structural, physical and mechanical properties of SS powder. SS (Grade-SUS316L) powder was divided into two parts denoted as control and treatment. The treatment part was received Mr.
An Impact of Biofield Therapy on Properties of Para-Dichlorobenzene
Para-dichlorobenzene (p-DCB) is widely used as a chemical intermediate in manufacturing of dyes, pharmaceuticals, polymers and other organic synthesis. The aim of present study was to evaluate the impact of biofield treatment on physical, thermal, and spectroscopic properties of p-dichlorobenzene. The p-dichlorobenzene sample was divided into two groups that served as treated and control. The treated group received Mr. Trivedi’s biofield treatment.
Biofield | An Investigation on the Properties of Myristic acid
Myristic acid has been extensively used for fabrication of phase change materials for thermal energy storage applications. The objective of present research was to investigate the influence of biofield treatment on physical and thermal properties of myristic acid. The study was performed in two groups (control and treated).
Modification in Properties of Biofield Treated m-Toluic Acid
m-toluic acid (MTA) is widely used in manufacturing of dyes, pharmaceuticals, polymer stabilizers, and insect repellents. The aim of present study was to evaluate the impact of biofield treatment on physical, thermal and spectroscopic properties of MTA. MTA sample was divided into two groups that served as treated and control. The treated group received Mr.
Mahendra Trivedi's Biofield Treatment Impact on Klebsiella pneumoniae
Klebsiella pneumoniae (K. pneumoniae) is a common nosocomial pathogen causing respiratory tract (pneumoniae) and blood stream infections. Multidrug-resistant (MDR) isolates of K. pneumoniae infections are difficult to treat in patients in health care settings. Aim of the present study was to determine the impact of Mr. Trivedi’s biofield treatment on four MDR clinical lab isolates (LS) of K. pneumoniae (LS 2, LS 6, LS 7, and LS 14). Samples were divided into two groups i.e. control and biofield treated. Control and treated groups were analyzed for antimicrobial susceptibility pattern, minimum inhibitory concentration (MIC), biochemical study and biotype number using MicroScan Walk-Away® system.