OpenCV History[edit] Advance vision research by providing not only open but also optimized code for basic vision infrastructure. No more reinventing the wheel.Disseminate vision knowledge by providing a common infrastructure that developers could build on, so that code would be more readily readable and transferable.Advance vision-based commercial applications by making portable, performance-optimized code available for free—with a license that did not require to be open or free themselves. The first alpha version of OpenCV was released to the public at the IEEE Conference on Computer Vision and Pattern Recognition in 2000, and five betas were released between 2001 and 2005. The first 1.0 version was released in 2006. The second major release of the OpenCV was on October 2009. In August 2012, support for OpenCV was taken over by a non-profit foundation, OpenCV.org, which maintains a developer[2] and user site.[3] Applications[edit] OpenCV's application areas include: Programming language[edit]
OpenCV Tutorials The following links describe a set of basic OpenCV tutorials. All the source code mentioned here is provide as part of the OpenCV regular releases, so check before you start copy & pasting the code. The list of tutorials below is automatically generated from reST files located in our GIT repository. As always, we would be happy to hear your comments and receive your contributions on any tutorial. Introduction to OpenCVcore module. The Core Functionalityimgproc module. Welcome OPENCV \ library OpenCV is an open source computer vision library originally developed by Intel. It is free for commercial and research use under a BSD license. The library is cross-platform, and runs on Mac OS X, Windows and Linux. It focuses mainly towards real-time image processing, as such, if it finds Intel's Integrated Performance Primitives on the system, it will use these commercial optimized routines to accelerate itself. This implementation is not a complete port of OpenCV. real-time capture video file import basic image treatment (brightness, contrast, threshold, …) object detection (face, body, …) blob detection Future versions will include more advanced functions such as motion analysis, object and color tracking, multiple OpenCV object instances … For more information about OpenCV visit the Open Source Computer Vision Library Intel webpage, the OpenCV Library Wiki, and the OpenCV Reference Manual (pdf). Installation instructions Documentation Credits
vision_opencv electric: Documentation generated on January 11, 2013 at 11:58 AMfuerte: Documentation generated on December 28, 2013 at 05:43 PMgroovy: Documentation generated on March 27, 2014 at 12:20 PM (job status).hydro: Documentation generated on March 27, 2014 at 01:33 AM (job status).indigo: Documentation generated on March 27, 2014 at 01:22 PM (job status). Documentation The vision_opencv stack provides packaging of the popular OpenCV library for ROS. For information about the OpenCV library, please see the OpenCV main page at links to complete documentation for OpenCV, as well as other OpenCV resources (like the bug tracker on For OpenCV vision_opencv provides several packages: cv_bridge: Bridge between ROS messages and OpenCV. image_geometry: Collection of methods for dealing with image and pixel geometry In order to use ROS with OpenCV, please see the cv_bridge package. As of electric, OpenCV is a system dependency. Using OpenCV in your ROS code