background preloader

Wave–particle duality

Wave–particle duality
Origin of theory[edit] The idea of duality originated in a debate over the nature of light and matter that dates back to the 17th century, when Christiaan Huygens and Isaac Newton proposed competing theories of light: light was thought either to consist of waves (Huygens) or of particles (Newton). Through the work of Max Planck, Albert Einstein, Louis de Broglie, Arthur Compton, Niels Bohr, and many others, current scientific theory holds that all particles also have a wave nature (and vice versa).[2] This phenomenon has been verified not only for elementary particles, but also for compound particles like atoms and even molecules. For macroscopic particles, because of their extremely short wavelengths, wave properties usually cannot be detected.[3] Brief history of wave and particle viewpoints[edit] Thomas Young's sketch of two-slit diffraction of waves, 1803 Particle impacts make visible the interference pattern of waves. A quantum particle is represented by a wave packet.

Photon Nomenclature[edit] In 1900, Max Planck was working on black-body radiation and suggested that the energy in electromagnetic waves could only be released in "packets" of energy. In his 1901 article [4] in Annalen der Physik he called these packets "energy elements". The word quanta (singular quantum) was used even before 1900 to mean particles or amounts of different quantities, including electricity. Later, in 1905, Albert Einstein went further by suggesting that electromagnetic waves could only exist in these discrete wave-packets.[5] He called such a wave-packet the light quantum (German: das Lichtquant). The name photon derives from the Greek word for light, φῶς (transliterated phôs). Physical properties[edit] The cone shows possible values of wave 4-vector of a photon. A photon is massless,[Note 2] has no electric charge,[13] and is stable. Photons are emitted in many natural processes. Since p points in the direction of the photon's propagation, the magnitude of the momentum is

Complementarity (physics) In physics, complementarity is a fundamental principle of quantum mechanics, closely associated with the Copenhagen interpretation. It holds that objects governed by quantum mechanics, when measured, give results that depend inherently upon the type of measuring device used, and must necessarily be described in classical mechanical terms. Further, a full description of a particular type of phenomenon can only be achieved through measurements made in each of the various possible bases — which are thus complementary. The complementarity principle was formulated by Niels Bohr, the developer of the Bohr model of the atom, and a leading founder of quantum mechanics.[1] Bohr summarized the principle as follows: ...however far the [quantum physical] phenomena transcend the scope of classical physical explanation, the account of all evidence must be expressed in classical terms. For example, the particle and wave aspects of physical objects are such complementary phenomena. Physicists F.A.M. Dr.

Thermal radiation This diagram shows how the peak wavelength and total radiated amount vary with temperature according to Wien's displacement law. Although this plot shows relatively high temperatures, the same relationships hold true for any temperature down to absolute zero. Visible light is between 380 and 750 nm. Thermal radiation in visible light can be seen on this hot metalwork. Its emission in the infrared is invisible to the human eye and the camera the image was taken with, but an infrared camera could show it (See Thermography). Thermal radiation is electromagnetic radiation generated by the thermal motion of charged particles in matter. Examples of thermal radiation include the visible light and infrared light emitted by an incandescent light bulb, the infrared radiation emitted by animals and detectable with an infrared camera, and the cosmic microwave background radiation. Thermal radiation is one of the fundamental mechanisms of heat transfer. Overview[edit] Surface effects[edit] Here,

Uncertainty principle where ħ is the reduced Planck constant. The original heuristic argument that such a limit should exist was given by Heisenberg, after whom it is sometimes named the Heisenberg principle. This ascribes the uncertainty in the measurable quantities to the jolt-like disturbance triggered by the act of observation. Though widely repeated in textbooks, this physical argument is now known to be fundamentally misleading.[4][5] While the act of measurement does lead to uncertainty, the loss of precision is less than that predicted by Heisenberg's argument; the formal mathematical result remains valid, however. Since the uncertainty principle is such a basic result in quantum mechanics, typical experiments in quantum mechanics routinely observe aspects of it. Introduction[edit] Click to see animation. The superposition of several plane waves to form a wave packet. As a principle, Heisenberg's uncertainty relationship must be something that is in accord with all experience. . with yields where

Absolute zero Absolute zero is the lower limit of the thermodynamic temperature scale, a ficticious state at which the enthalpy and entropy of a cooled ideal gas reaches its minimum value, taken as 0. The theoretical temperature is determined by extrapolating the ideal gas law; by international agreement, absolute zero is taken as −273.15° on the Celsius scale (International System of Units),[1][2] which equates to −459.67° on the Fahrenheit scale (English/United States customary units).[3] The corresponding Kelvin and Rankine temperature scales set their zero points at absolute zero by definition. The laws of thermodynamics dictate that absolute zero cannot be reached using only thermodynamic means,[clarification needed] as the temperature of the substance being cooled approaches the temperature of the cooling agent asymptotically. A system at absolute zero still possesses quantum mechanical zero-point energy, the energy of its ground state. The kinetic energy of the ground state cannot be removed.

Quantum entanglement Quantum entanglement is a physical phenomenon that occurs when pairs or groups of particles are generated or interact in ways such that the quantum state of each particle cannot be described independently – instead, a quantum state may be given for the system as a whole. Such phenomena were the subject of a 1935 paper by Albert Einstein, Boris Podolsky and Nathan Rosen,[1] describing what came to be known as the EPR paradox, and several papers by Erwin Schrödinger shortly thereafter.[2][3] Einstein and others considered such behavior to be impossible, as it violated the local realist view of causality (Einstein referred to it as "spooky action at a distance"),[4] and argued that the accepted formulation of quantum mechanics must therefore be incomplete. History[edit] However, they did not coin the word entanglement, nor did they generalize the special properties of the state they considered. Concept[edit] Meaning of entanglement[edit] Apparent paradox[edit] The hidden variables theory[edit]

Light A triangular prism dispersing a beam of white light. The longer wavelengths (red) and the shorter wavelengths (blue) get separated Light is electromagnetic radiation within a certain portion of the electromagnetic spectrum. The word usually refers to visible light, which is visible to the human eye and is responsible for the sense of sight.[1] Visible light is usually defined as having a wavelength in the range of 400 nanometres (nm), or 400×10−9 m, to 700 nanometres – between the infrared (with longer wavelengths) and the ultraviolet (with shorter wavelengths).[2][3] Often, infrared and ultraviolet are also called light. The main source of light on Earth is the Sun. In physics, the term light sometimes refers to electromagnetic radiation of any wavelength, whether visible or not.[4][5] In this sense, gamma rays, X-rays, microwaves and radio waves are also light. Electromagnetic spectrum and visible light The behaviour of EMR depends on its wavelength. Speed of light Optics Refraction where

Quantum superposition Quantum superposition is a fundamental principle of quantum mechanics that holds that a physical system—such as an electron—exists partly in all its particular theoretically possible states (or, configuration of its properties) simultaneously; but when measured or observed, it gives a result corresponding to only one of the possible configurations (as described in interpretation of quantum mechanics). and . Here is the Dirac notation for the quantum state that will always give the result 0 when converted to classical logic by a measurement. is the state that will always convert to 1. Concept[edit] The principle of quantum superposition states that if a physical system may be in one of many configurations—arrangements of particles or fields—then the most general state is a combination of all of these possibilities, where the amount in each configuration is specified by a complex number. For example, if there are two configurations labelled by 0 and 1, the most general state would be . . . .

Related: