TESLA Series Technologies | Synergistic Research The all new TESLA Series cables combine three revolutionary technologies based on the work of Nikola Tesla – the Tesla Tricon cable geometry, Zero Capacitance Active Shielding, and a proprietary Patent Pending conditioning process in a new line of cables that are smaller and more flexible than our previous models with significantly higher performance and value. TESLA Cables allow you to hear deeper into recordings with detail that’s transparent and non-fatiguing. In fact starting at the Accelerator interconnect and speaker cable level, TESLA Cables outperform every cable we have ever pitted them against regardless of price. These extraordinary cables represent a new benchmark by which all other cables can be measured and they do this with seemingly opposite strengths. Quantum Tunneling High Voltage Conditioning Quantum Tunneling
Gravitational-wave finding causes 'spring cleaning' in physics Detlev van Ravenswaay/Science Photo Library Artist's rendering of 'bubble universes' within a greater multiverse — an idea that some experts say was bolstered with this week's discovery of gravitational waves. On 17 March, astronomer John Kovac of the Harvard-Smithsonian Center for Astrophysics presented long-awaited evidence of gravitational waves — ripples in the fabric of space — that originated from the Big Bang during a period of dramatic expansion known as inflation. By the time the Sun set that day in Cambridge, Massachusetts, the first paper detailing some of the discovery’s consequences had already been posted online1, by cosmologist David Marsh of the Perimeter Institute for Theoretical Physics in Waterloo, Canada, and his colleagues. Cosmologist Marc Kamionkowski of Johns Hopkins University in Baltimore, Maryland, agrees that some axion models no longer work, “because they require inflation to operate at a lower energy scale than the one indicated by BICEP2”. Linde agrees.
Does DNA Emit Light? Dan Eden for viewzone.com An incredible story! I get lots of suggestions for stories, and I really appreciate them. But some of them are too good to be true. I had this same experience this week when I was sent an article where a Russian (again) scientist, Pjotr Garjajev, had managed to intercept communication from a DNA molecule in the form of ultraviolet photons -- light! But this was just the beginning. Dr. I tried to find a scientific journal that had this experiment. Fritz-Albert Popp thought he had discovered a cure for cancer. It was 1970, and Popp, a theoretical biophysicist at the University of Marburg in Germany, had been teaching radiology -- the interaction of electromagnetic (EM) radiation on biological systems. He'd been examining two almost identical molecules: benzo[a]pyrene, a polycyclic hydrocarbon known to be one of the most lethal carcinogens to humans, and its twin (save for a tiny alteration in its molecular makeup), benzo[e]pyrene. Why Ultra-violet light? Photorepair
Quantum Biology and the Puzzle of Coherence One of the more exciting discoveries in biology in the last few years is the role that quantum effects seem to play in many living systems. The two most famous examples are in bird navigation, where the quantum zeno effect seems to help determine the direction of the Earth’s magnetic field, and in photosynthesis, where the way energy passes across giant protein matrices seems to depend on long-lasting quantum coherence. Despite the growing evidence in these cases, many physicists are uneasy, however. The problem is the issue of decoherence, how quickly quantum states can survive before they are overwhelmed by the hot, wet environment inside living things. According to conventional quantum calculations, these states should decay in the blink of an eye, so fast that they should not be able to play any role in biology. That’s led many physicists to assume something is wrong: either the measurements are faulty in some way or there is some undiscovered mechanism that prevents decoherence.
Quantum weirdness is everywhere in the living world The point of the most famous thought-experiment in quantum physics is that the quantum world is different from our familiar one. Imagine, suggested the Austrian physicist Erwin Schrödinger, that we seal a cat inside a box. The cat’s fate is linked to the quantum world through a poison that will be released only if a single radioactive atom decays. Quantum mechanics says that the atom must exist in a peculiar state called ‘superposition’ until it is observed, a state in which it has both decayed and not decayed. Furthermore, because the cat’s survival depends on what the atom does, it would appear that the cat must also exist as a superposition of a live and a dead cat until somebody opens the box and observes it. After all, the cat’s life depends on the state of the atom, and the state of the atom has not yet been decided. Yet nobody really believes that a cat can be simultaneously dead and alive. Quantum mechanics insists that all particles are also waves. Was he right? Take enzymes.
Scientists Achieve Quantum Teleportation One of the hurdles to teleportation has been overcome, with the reliable movement of quantum information between two objects separated by a short distance. The achievement is still a very, very long way from the movements familiar from science fiction, but strengthens our confidence in the theory of quantum entanglement, one of the most controversial aspects of modern physics. It may, moreover, assist the much closer goal of quantum computing. Certain subatomic particles always exist in paired states. For example, two electrons may have opposite spins. However, the distance between the two this means that the information of what has happened to the one particle must be transmitted infinitely fast – faster than the speed of light. In 1964 physicist John Stewart Bell came up with an idea for an experiment to test whether entanglement is real. The Delft team trapped electrons in very low temperature diamonds, which team leader Ronald Hanson describes as “miniprisons”.
A Lazy Layman's Guide to Quantum Physics That's an easy one: it's the science of things so small that the quantum nature of reality has an effect. Quantum means 'discrete amount' or 'portion'. Max Planck discovered in 1900 that you couldn't get smaller than a certain minimum amount of anything. The meaning of quantum physics is a bit of a taboo subject, but everyone thinks about it. Copenhagen Interpretation (CI) This is the granddaddy of interpretations, championed by the formidable Niels Bohr of Copenhagen university. The CI has a bit of a cheek calling itself an interpretation, because it essentially says "thou shalt not ask what happens before ye look". When you do try to take Copenhagen seriously you come to the conclusion that consciousness and particle physics are inter-related, and you rush off to write a book called The Dancing Wu-Li Masters. More recently, Henry Stapp at the University of California has written papers such as On Quantum Theories of the Mind (1997). What happens to the cat? What happens to the cat?
New Book Explains How Hugging Trees Could Actually Improve Your Health Have you hugged a tree today? No?! Well, you should, because it just might improve your health – according to a new book published this year, touching trees and being near nature could actually make you healthier and improve a wide range of health issues. In Blinded by Science, author Matthew Silverstone says he has proven that the vibrational energy of trees and plants gives us health benefits. Silverstone wrote Blinded By Science to prove scientifically that the ways in which we live have a damaging effect on our health. So how exactly does this happen? Sounds like a good deal to us. + Blinded By Science Via Natural News Images ©Bridgette Meinhold
You’re powered by quantum mechanics. No, really… | Science Every year, around about this time, thousands of European robins escape the oncoming harsh Scandinavian winter and head south to the warmer Mediterranean coasts. How they find their way unerringly on this 2,000-mile journey is one of the true wonders of the natural world. For unlike many other species of migratory birds, marine animals and even insects, they do not rely on landmarks, ocean currents, the position of the sun or a built-in star map. Over the past few years, the European robin, and its quantum “sixth sense”, has emerged as the pin-up for a new field of research, one that brings together the wonderfully complex and messy living world and the counterintuitive, ethereal but strangely orderly world of atoms and elementary particles in a collision of disciplines that is as astonishing and unexpected as it is exciting. Most people have probably heard of quantum mechanics, even if they don’t really know what it is about. But what about life? Enzymes are the workhorses of life.
New evidence that plants get their energy using quantum entanglement The fact that biological systems can exploit quantum effects is quite astounding. No it is not, not even remotely.There is literally no possible way that photosynthesis could take place without involving quantum physics. This particular exploit is really neat, of course, but far too much as been made of how mystical or ungraspable quantum physics is. Basic chemistry is defined by quantum physics. Every interaction of two particles or two molecules is the result of the laws of quantum physics. Make a piece of toast? The distinction being made is that toast-making was just as explicable with continuous waves of energy being absorbed by the bread but that no such classical interpretation is possible for these new photosynthesis observations. Right? Yeah, it's always easy to come in after someone's done the hard research and go "Oh, pff. Or, you can sit back and let people admire how wild our Universe is and just how little we know about it. It is no more magical than classical physics.
Unusual quantum effect discovered in earliest stages of photosynthesis Quantum physics and plant biology seem like two branches of science that could not be more different, but surprisingly they may in fact be intimately tied. Researchers at the U.S. Department of Energy's (DOE) Argonne National Laboratory and the Notre Dame Radiation Laboratory at the University of Notre Dame used ultrafast spectroscopy to see what happens at the subatomic level during the very first stage of photosynthesis. "If you think of photosynthesis as a marathon, we're getting a snapshot of what a runner looks like just as he leaves the blocks," said Argonne biochemist David Tiede. "We're seeing the potential for a much more fundamental interaction than a lot of people previously considered." While different species of plants, algae and bacteria have evolved a variety of different mechanisms to harvest light energy, they all share a feature known as a photosynthetic reaction center.
Quantum 'weirdness' used by plants, animals - Technology & Science Birds like the European robin have an internal compass which appears to make use of a phenomenon called quantum entanglement. ((Vasily Fedosenko/Reuters)) Bird navigation, plant photosynthesis and the human sense of smell all represent ways living things appear to exploit the oddities of quantum physics, scientists are finding. Quantum mechanics is the branch of physics dealing with the strange behaviour of very tiny things like elementary particles and atoms, and is extremely different from the physics that humans experience every day. "Down at that level, everything is pretty darn weird," Seth Lloyd said before giving a lecture about quantum aspects of biology Wednesday evening in Waterloo, Ont. "Electrons can be in two places in once, or five places at once, or a thousand places at once. "When things get bigger, certainly on the scale of human beings or even at the scale of bacteria, then this kind of quantum weirdness tends to go away." Sensor, solar cell lessons Quantum Hanky-Panky
Human Cells have Electric Fields as Powerful as Lighting Bolts -A Galaxy Insight Using newly developed voltage-sensitive nanoparticles, researchers have found that the previously unknown electric fields inside of cells are as strong, or stronger, as those produced in lightning bolts. Previously, it has only been possible to measure electric fields across cell membranes, not within the main bulk of cells, so scientists didn't even know cells had an internal electric field. This discovery is a surprising twist for cell researchers. Scientists don't know what causes these incredibly strong fields or why they' are there. University of Michigan researchers led by chemistry professor Raoul Kopelman encapsulated voltage-sensitive dyes in polymer spheres just 30 nanometers in diameter. "They have developed a tool that allows you to look at cellular changes on a very local level," said Piotr Grodzinski, director of the National Cancer Institute Alliance for Nanotechnology in Cancer in Technology Review. Posted by Rebecca Sato Related Galaxy posts: