Home | Practical Physics This website is for teachers of physics in schools and colleges. It is a collection of experiments that demonstrate a wide range of physical concepts and processes. Some of the experiments can be used as starting-points for investigations or for enhancement activities. Many have links to carefully selected further reading and all include information and guidance for technicians. Physics is a practical science. Practical activities are not just motivational and fun: they can also sharpen students’ powers of observation, stimulate questions, and help develop new understanding and vocabulary. Good quality, appropriate physics experiments and investigations are the key to enhanced learning, and clarification and consolidation of theory. We have published a new set of resources to support the teaching of practical science for Key Stages 3-5.
Maths - Resources Maths - Resources Maths Investigations Games Test Yourself Revise Other Stuff Resources Feedback Updates Links Source File Types PDF file. You might need to install Acrobat Reader to view and print these files. Open Document An open standard for office documents. Microsoft Office These may or may not be compatible with the version of Office you have installed. Zip archive A zip archive is a convenient way of combining and compressing several files into one single file. WWW link Link to another site. Stationery | Starters & Puzzles | Worksheets: Number | Worksheets: Geometry | Worksheets: Statistics | Miscellaneous Stationery This section contains printables that you might find useful. Links Graph paper generator (incompetech.com) Make your own graph paper! Statistical graph papers (weibull.com) More downloadable graph papers Starters & Puzzles Worksheets - Number Worksheets - Geometry Worksheets - Statistics & probability Miscellaneous
Hammack Home This book is an introduction to the standard methods of proving mathematical theorems. It has been approved by the American Institute of Mathematics' Open Textbook Initiative. Also see the Mathematical Association of America Math DL review (of the 1st edition), and the Amazon reviews. The second edition is identical to the first edition, except some mistakes have been corrected, new exercises have been added, and Chapter 13 has been extended. Order a copy from Amazon or Barnes & Noble for $13.75 or download a pdf for free here. Part I: Fundamentals Part II: How to Prove Conditional Statements Part III: More on Proof Part IV: Relations, Functions and Cardinality Thanks to readers around the world who wrote to report mistakes and typos! Instructors: Click here for my page for VCU's MATH 300, a course based on this book. I will always offer the book for free on my web page, and for the lowest possible price through on-demand publishing.
Physics Homework Help, Physics Help, Physics Tutors lanl.arxiv.org e-Print archive mirror Mathematical Atlas: A gateway to Mathematics Welcome! This is a collection of short articles designed to provide an introduction to the areas of modern mathematics and pointers to further information, as well as answers to some common (or not!) questions. The material is arranged in a hierarchy of disciplines, each with its own index page ("blue pages"). To reach the best page for your interests, use whichever of these navigation tools ("purple pages") you prefer: For resources useful in all areas of mathematics try 00: General Mathematics. There is a backlog of articles awaiting editing before they are referenced in the blue pages, but you are welcome to snoop around VIRUS WARNING: The Mathematical Atlas receives but does not send mail using the math-atlas.org domain name. Please bookmark any pages at this site with the URL This URL forces frames; for a frame-free version use
PhysicsCentral: Learn How Your World Works Pauls Online Math Notes Science in the News Chapter 3 Classical physics could not explain the spectra of black bodies. It predicted that the intensity (power emitted at a given wavelength) of emitted light should increase rapidly with decreasing wavelength without limit (the "ultraviolet catastrophe"). In the figure below, the curve labeled "Rayleigh-Jeans law" shows the classically expected behavior. However, the measured spectra actually showed an intensity maximum at a particular wavelength, while the intensity decreased at wavelengths both above and below the maximum. E = hf (Planck's formula) where h (Planck's constant) is an exceedingly small number whose value we do not need here, and f is the frequency of vibration of the oscillator (the number of times it vibrates per second). Also in the late 1800s, experimental physicists were measuring the emission of electrons from metallic objects when they shined light on the object. 3.2. Line spectra are another example of phenomena that could not be explained by classical physics. l=h/p