background preloader

Nanotechnology

Nanotechnology
Just give me the FAQ The next few paragraphs provide a brief introduction to the core concepts of nanotechnology, followed by links to further reading. Manufactured products are made from atoms. If we rearrange the atoms in coal we can make diamond. If we rearrange the atoms in sand (and add a few other trace elements) we can make computer chips. If we rearrange the atoms in dirt, water and air we can make potatoes. Todays manufacturing methods are very crude at the molecular level. It's like trying to make things out of LEGO blocks with boxing gloves on your hands. In the future, nanotechnology (more specifically, molecular nanotechnology or MNT) will let us take off the boxing gloves. "Nanotechnology" has become something of a buzzword and is applied to many products and technologies that are often largely unrelated to molecular nanotechnology. Nanotechnology will let us: Achieve the ultimate in precision: almost every atom in exactly the right place. Some Frequently Asked Questions Books

nano tech 2013 International Nanotechnology Exhibition & Conference Science Encyclopedia Assembler Books Space Adventures Nanotechnology Nanotechnology ("nanotech") is the manipulation of matter on an atomic, molecular, and supramolecular scale. The earliest, widespread description of nanotechnology[1][2] referred to the particular technological goal of precisely manipulating atoms and molecules for fabrication of macroscale products, also now referred to as molecular nanotechnology. A more generalized description of nanotechnology was subsequently established by the National Nanotechnology Initiative, which defines nanotechnology as the manipulation of matter with at least one dimension sized from 1 to 100 nanometers. This definition reflects the fact that quantum mechanical effects are important at this quantum-realm scale, and so the definition shifted from a particular technological goal to a research category inclusive of all types of research and technologies that deal with the special properties of matter that occur below the given size threshold. Origins[edit] Comparison of Nanomaterials Sizes

Flash Physics Engine Box2DFlashAS3 1.4.2 The Active Mind Directory LiftPort Space Elevator - LiftPort v2.0! Nanotechnology is coming by Ralph C. Merkle, Principal Fellow, Zyvex This is the English original of an article translated into German and published in the Frankfurter Allgemeine Zeitung of Monday, September 11 2000 on page 55. In the coming decades nanotechnology could make a supercomputer so small it could barely be seen in a light microscope. Not long ago, such a forecast would have been ridiculed. At its heart, the coming revolution in manufacturing is a continuation of trends that date back decades and even centuries. The remarkably low manufacturing cost comes from self replication. While nanotechnology does propose to use self replication, it does not propose to copy living systems. Now that the feasibility of nanotechnology is widely accepted, we enter the next phase of the public discussion: what policies should we adopt to best deal with it? Self replication is at the heart of many policy discussions. Consider, for example, the difference between a bird and an airplane. Further reading:

Universe Sandbox | interactive space simulator

Related: