Visual Representation of SQL Joins
Introduction This is just a simple article visually explaining SQL JOINs. Background I'm a pretty visual person. Things seem to make more sense as a picture. Using the code I am going to discuss seven different ways you can return data from two relational tables. For the sake of this article, I'll refer to 5, 6, and 7 as LEFT EXCLUDING JOIN, RIGHT EXCLUDING JOIN, and OUTER EXCLUDING JOIN, respectively. Inner JOIN This is the simplest, most understood Join and is the most common. Hide Copy Code SELECT <select_list> FROM Table_A A INNER JOIN Table_B B ON A.Key = B.Key Left JOIN This query will return all of the records in the left table (table A) regardless if any of those records have a match in the right table (table B). SELECT <select_list>FROM Table_A A LEFT JOIN Table_B B ON A.Key = B.Key Right JOIN This query will return all of the records in the right table (table B) regardless if any of those records have a match in the left table (table A). Outer JOIN Left Excluding JOIN Examples History
Cassandra vs MongoDB vs CouchDB vs Redis vs Riak vs HBase comparison :: KKovacs
While SQL databases are insanely useful tools, their monopoly in the last decades is coming to an end. And it's just time: I can't even count the things that were forced into relational databases, but never really fitted them. (That being said, relational databases will always be the best for the stuff that has relations.) But, the differences between NoSQL databases are much bigger than ever was between one SQL database and another. In this light, here is a comparison of Open Source NOSQL databases: The most popular ones # Redis # Best used: For rapidly changing data with a foreseeable database size (should fit mostly in memory). For example: To store real-time stock prices. Cassandra # Written in: JavaMain point: Store huge datasets in "almost" SQLLicense: ApacheProtocol: CQL3 & ThriftCQL3 is very similar to SQL, but with some limitations that come from the scalability (most notably: no JOINs, no aggregate functions.)CQL3 is now the official interface. MongoDB # ElasticSearch # CouchDB #
Assessing Linear Models in R | Connor Johnson
In this post I will look at several techniques for assessing linear models in R, via the IPython Notebook interface. I find the notebook interface to be more convenient for development and debugging because it allows one to evaluate cells instead of going back and forth between a script and a terminal. If you do not have the IPython Notebook, then you can check it out here. If you do not already have it, you will also need to install the rpy2 module. Once all of that is squared away, you should be able to open an IPython notebook from the terminal using, and load the rmagic extension using, We will be using the rock data set that comes with R. In the rock data set, twelve core samples were sampled by four cross-sections, making a total of 48 samples. The data collection was performed by BP, and the image analysis done by Ronit Katx, of the University of Oxford. A linear model attempts to describe an output variable in terms of a linear combination of predictor variables. Here, Residuals
How RDF Databases Differ from Other NoSQL Solutions - The Datagraph Blog
This started out as an answer at Semantic Overflow on how RDF database systems differ from other currently available NoSQL solutions. I've here expanded the answer somewhat and added some general-audience context. RDF database systems are the only standardized NoSQL solutions available at the moment, being built on a simple, uniform data model and a powerful, declarative query language. In case you're not familiar with the term, NoSQL ("Not only SQL") is a loosely-defined umbrella moniker for describing the new generation of non-relational database systems that have sprung up in the last several years. Key-value databases are familiar to anyone who has worked with the likes of the venerable Berkeley DB. RDF database systems form the largest subset of this last NoSQL category. A simple and uniform standard data model. From the preceding points it follows that RDF-based NoSQL solutions enjoy some very concrete advantages such as: Data portability.
Concepts for Fourier Transforms
A signal can be viewed from two different standpoints: The frequency domain The time domain In astronomy the frequency domain is perhaps the most familiar, because a spectrometer, e.g. a prism or a diffraction grating, splits light into its component color or frequencies and permits us to record its spectral content. This is like the trace on a spectrum analyzer, where the horizontal deflection is the frequency variable and the vertical deflection is the signals amplitude at that frequency. In the lab we are also familiar with the time domain. Any signal can be fully described in either of these domains. Depending on what we want to do with the signal, one domain tends to be more useful than the other, so rather than getting tied up in mathematics with a time domain signal we might convert it to the frequency domain where the mathematics are simpler. Back to Contents or on to Applications
Welcome to TheFourierTransform.com - The Fourier Transform Website
Related:
Related: