Planck constant
Plaque at the Humboldt University of Berlin: "Max Planck, discoverer of the elementary quantum of action h, taught in this building from 1889 to 1928." In 1905 the value (E), the energy of a charged atomic oscillator, was theoretically associated with the energy of the electromagnetic wave itself, representing the minimum amount of energy required to form an electromagnetic field (a "quantum"). Further investigation of quanta revealed behaviour associated with an independent unit ("particle") as opposed to an electromagnetic wave and was eventually given the term photon. The Planck relation now describes the energy of each photon in terms of the photon's frequency. This energy is extremely small in terms of ordinary experience. Since the frequency , wavelength λ, and speed of light c are related by λν = c, the Planck relation for a photon can also be expressed as The above equation leads to another relationship involving the Planck constant. Value[edit] Significance of the value[edit]
Quantum geometry
In theoretical physics, quantum geometry is the set of new mathematical concepts generalizing the concepts of geometry whose understanding is necessary to describe the physical phenomena at very short distance scales (comparable to Planck length). At these distances, quantum mechanics has a profound effect on physics. Quantum gravity[edit] In an alternative approach to quantum gravity called loop quantum gravity (LQG), the phrase "quantum geometry" usually refers to the formalism within LQG where the observables that capture the information about the geometry are now well defined operators on a Hilbert space. It is possible (but considered unlikely) that this strictly quantized understanding of geometry will be consistent with the quantum picture of geometry arising from string theory. Another, quite successful, approach, which tries to reconstruct the geometry of space-time from "first principles" is Discrete Lorentzian quantum gravity. Quantum states as differential forms[edit]
Quantum entanglement
Quantum entanglement is a physical phenomenon that occurs when pairs or groups of particles are generated or interact in ways such that the quantum state of each particle cannot be described independently – instead, a quantum state may be given for the system as a whole. Such phenomena were the subject of a 1935 paper by Albert Einstein, Boris Podolsky and Nathan Rosen,[1] describing what came to be known as the EPR paradox, and several papers by Erwin Schrödinger shortly thereafter.[2][3] Einstein and others considered such behavior to be impossible, as it violated the local realist view of causality (Einstein referred to it as "spooky action at a distance"),[4] and argued that the accepted formulation of quantum mechanics must therefore be incomplete. History[edit] However, they did not coin the word entanglement, nor did they generalize the special properties of the state they considered. Concept[edit] Meaning of entanglement[edit] Apparent paradox[edit] The hidden variables theory[edit]
Schrödinger equation
In quantum mechanics, the Schrödinger equation is a partial differential equation that describes how the quantum state of some physical system changes with time. It was formulated in late 1925, and published in 1926, by the Austrian physicist Erwin Schrödinger.[1] In classical mechanics, the equation of motion is Newton's second law, and equivalent formulations are the Euler–Lagrange equations and Hamilton's equations. In quantum mechanics, the analogue of Newton's law is Schrödinger's equation for a quantum system (usually atoms, molecules, and subatomic particles whether free, bound, or localized). The concept of a state vector is a fundamental postulate of quantum mechanics. In the standard interpretation of quantum mechanics, the wave function is the most complete description that can be given to a physical system. Equation[edit] Time-dependent equation[edit] The form of the Schrödinger equation depends on the physical situation (see below for special cases). Implications[edit]
Uncertainty reigns over Heisenberg's measurement analogy
A row has broken out among physicists over an analogy used by Werner Heisenberg in 1927 to make sense of his famous uncertainty principle. The analogy was largely forgotten as quantum theory became more sophisticated but has enjoyed a revival over the past decade. While several recent experiments suggest that the analogy is flawed, a team of physicists in the UK, Finland and Germany is now arguing that these experiments are not faithful to Heisenberg's original formulation. Heisenberg's uncertainty principle states that we cannot measure certain pairs of variables for a quantum object – position and momentum, say – both with arbitrary accuracy. When Heisenberg proposed the principle in 1927, he offered a simple physical picture to help it make intuitive sense. Not necessarily wrong Then in 1988 Masanao Ozawa at Nagoya University in Japan argued that Heisenberg's original relationship between error and disturbance does not represent a fundamental limit of uncertainty. Truer to Heisenberg?
Quantum Physics Revealed As Non-Mysterious
This is one of several shortened indices into the Quantum Physics Sequence. Hello! You may have been directed to this page because you said something along the lines of "Quantum physics shows that reality doesn't exist apart from our observation of it," or "Science has disproved the idea of an objective reality," or even just "Quantum physics is one of the great mysteries of modern science; no one understands how it works." There was a time, roughly the first half-century after quantum physics was invented, when this was more or less true. The series of posts indexed below will show you - not just tell you - what's really going on down there. Some optional preliminaries you might want to read: Reductionism: We build models of the universe that have many different levels of description. And here's the main sequence: Quantum Explanations: Quantum mechanics doesn't deserve its fearsome reputation.
Efimov state
The Efimov effect is an effect in the quantum mechanics of Few-body systems predicted by the Russian theoretical physicist V. N. Efimov[1][2] in 1970. The unusual Efimov state has an infinite number of similar states. In 2005, for the first time the research group of Rudolf Grimm and Hanns-Christoph Nägerl from the Institute for Experimental Physics (University of Innsbruck, Austria) experimentally confirmed such a state in an ultracold gas of caesium atoms. The interest in the "universal phenomena" of cold atomic gases is still growing, especially because of the long awaited experimental results.[8][9] The discipline of universality in cold atomic gases nearby the Efimov states are sometimes commonly referred to as "Efimov physics". The Efimov states are independent of the underlying physical interaction, and can in principle be observed in all quantum mechanical systems (molecular, atomic, and nuclear). References[edit] Jump up ^ В.И. External links[edit]
Interpretations of quantum mechanics
An interpretation of quantum mechanics is a set of statements which attempt to explain how quantum mechanics informs our understanding of nature. Although quantum mechanics has held up to rigorous and thorough experimental testing, many of these experiments are open to different interpretations. There exist a number of contending schools of thought, differing over whether quantum mechanics can be understood to be deterministic, which elements of quantum mechanics can be considered "real", and other matters. This question is of special interest to philosophers of physics, as physicists continue to show a strong interest in the subject. History of interpretations[edit] Main quantum mechanics interpreters An early interpretation has acquired the label Copenhagen interpretation, and is often used. Nature of interpretation[edit] An interpretation of quantum mechanics is a conceptual or argumentative way of relating between: Two qualities vary among interpretations: Concerns of Einstein[edit]