Spin
Un article de Wikipédia, l'encyclopédie libre. Le spin est, en physique quantique, une des propriétés des particules, au même titre que la masse ou la charge électrique. Comme d'autres observables quantiques, sa mesure donne des valeurs discrètes et est soumise au principe d'incertitude. C'est la seule observable quantique qui ne présente pas d'équivalent classique, contrairement, par exemple, à la position, l'impulsion ou l'énergie d'une particule. Historique[modifier | modifier le code] La genèse du concept de spin fut l'une des plus difficiles de l'histoire de la physique quantique au début du XXe siècle[1]. Le spin a d'abord été interprété comme un degré de liberté supplémentaire, s'ajoutant aux trois degrés de liberté de translation de l'électron : son moment cinétique intrinsèque (ou propre). Enfin, c'est en théorie quantique des champs que le spin montre son caractère le plus fondamental. Le spin du photon a été mis en évidence expérimentalement par Râman et Bhagavantam en 1931[6].
Nobel de physique 2013 : les découvreurs du boson de Higgs
NOBEL - Le prix Nobel de physique récompense la recherche du boson de Higgs. En témoigne les lauréats: le britannique qui a donné son nom au boson, mais aussi le belge François Englert. Le boson de Higgs est d'ailleurs appelé boson Brout-Englert-Higgs. Son existence a été vérifiée le 4 juillet 2012 grâce à l'accélérateur de particules du CERN donnant raison à ces deux chercheurs qui en avaient théorisé l'existence. Higgs, né en 1929 et Englert, en 1932, ne sont pas des physiciens expérimentaux, ce sont des théoriciens. Et s'ils sont tous les deux récompensées, c'est parce qu'ils ont eu indépendamment l'un de l'autre, une intuition géniale. Lire aussi:» Boson de Higgs: une découverte scientifique à 10 milliards d'euros, selon Forbes Physique des particules La physique s'intéresse notamment à la matière, une branche que l'on appelle la physique des particules. Mais d'où vient la masse de la matière? Séparément, Englert et Higgs ont théorisé l'existence de ce fameux boson. Close
Nobel de physique 2015 : des travaux sur les neutrinos
SCIENCE - Le prix Nobel de physique 2015 a été attribué conjointement mardi 6 octobre à Takaaki Kajita (Japon) et Arthur B. McDonald (Canada) pour la découverte des oscillations de neutrinos qui montre que ces particules ont une masse. Takaaki Kajita a démontré, en 1998, que les neutrinos, ces particules élémentaires produites par les réactions nucléaires, pouvaient se transformer quand ils entraient dans l’atmosphère. Pour observer le phénomène, le chercheur japonais et son équipe ont utilisé le "Super"Kamiokande", un observatoire dédié aux neutrinos de 40 mètres de haut et rempli de 50.000 tonnes d'eau. 4 ans plus tard, en 2002, Arthur B. Vous n'avez pas tout compris? Speedy Gonzales Cette particule élémentaire est en quelque sorte le "chaînon manquant" pour comprendre la radioactivité. Pourtant, théoriquement, les neutrinos sont partout. Etant donné que leur masse est proche de zéro, elles la traversent sans soucis et ne sont pas déviées par d'autres particules. Arthur B.
Cours physique sur la théorie des cordes
Il faut bien considérer dans le présent chapitre que la théorie des cordes (et in extenso des supercordes) est actuellement spéculative et n'a pas pu être vérifiée (confirmée) ni falsifiée par l'expérience comme le veut la démarche scientifique. Il convient donc de prendre avec prudence les développements qui vont suivre et d'être le plus critique possible ! Il s'agit par ailleurs d'une théorie (nous ne pouvons pas parler de modèle actuellement) d'unification des forces qui n'est pas nouvelle puisqu'elle a bientôt plus de trente ans et qui tente de combler les défauts du modèle standard des particules et aussi de réunir la relativité générale et physique quantique (ce qui n'est pas sans mal puisque cette dernière est dépendante du fond contrairement à la relativité générale). Elle est une des nombreuses théories qui existe en physique moderne et qui tente cette unification (il en existe une dizaine d'autres plus ou moins connues). H1. H2. avec donc : avec . page suivante : 2.
INTRODUCTION A LA THEORIE DES CORDES ~ cours scientifiques libres
L'une des plus grandes quêtes de la physique actuelle est l'uni cation des forces fondamentales en une seule théorie. Le programme ainsi dé ni a donc pour objectif la réconciliation de la théorie quantique des champs, qui décrit les interactions éléctrofaibles (éléctromagnétiques et faibles) et les interactions fortes, et de la relativité générale. C'est donc l'uni cation de l'in niment petit et de l'in niment grand en un tout cohérent, domaines respectifs dans lesquels les deux théories en question décrivent le monde réel avec une précison incroyable. Mais ces deux théories, paradoxalement, sont en l'état incompatibles, et même l'apparition des techniques de renormalisation n'a pas résolu ce problème : des in nis rédhibitoires apparaissent inévitablement. Cette théorie sou re toutefois de deux problèmes majeurs. Table des matières Préliminaires 1 Introduction 3 Spineurs Bibliographie 38
théorie des cordes)
Dernière mise à jour de ce chapitre: 2014-04-06 20:42:57 | {oUUID 1.724} Version: 3.0 Révision 3 | Rédacteur: Vincent ISOZ | Avancement: ~20% vues depuis le 2012-01-01: 0 Il faut bien considérer dans le présent chapitre que la théorie des cordes (et in extenso des supercordes) est actuellement spéculative et n'a pas pu être vérifiée (confirmée) ni falsifiée par l'expérience comme le veut la démarche scientifique. Il convient donc de prendre avec prudence les développements qui vont suivre et d'être le plus critique possible ! Il s'agit par ailleurs d'une théorie (nous ne pouvons pas parler de modèle actuellement) d'unification des forces qui n'est pas nouvelle puisqu'elle a bientôt plus de trente ans et qui tente de combler les défauts du modèle standard des particules et aussi de réunir la relativité générale et physique quantique (ce qui n'est pas sans mal puisque cette dernière est dépendante du fond contrairement à la relativité générale). H1. H2. avec donc: avec . Remarques: R1. R2. .
L'homme ? Du vide à 99,9999 % !
Qui suis-je ? Presque rien ! Et, il en est de même pour les planètes, les ordinateurs ou les carottes. Car toute chose, vivante ou inerte, présente sur Terre ou dans l'espace, est constituée d'atomes. Notre environnement, nous-mêmes, semblons fort complexes. Un atome est constitué d’un noyau (avec protons et neutrons) et d’électro Infiniment grand. Si un atome diffère d'un autre, c'est d'abord par le nombre de protons présents dans son noyau. Mais les protons ne sont pas les seuls constituants des atomes. Et beaucoup de vide Cette bougeotte, les électrons l'ont également au sein même des atomes. Et le vide alors ? Poussières d'étoiles Une image rare : des atomes d’hydrogènes.
7 : Une science en transition ?
Bien que le phénomène de décohérence nous indique la frontière entre les deux mondes, il ne donne aucune réponse satisfaisante aux multiples interrogations qui s'en suivent. Nous avons besoin de logique et de rationalité pour élaborer la structure de la matière. Comment alors poser des bases solides sur un monde si flou en apparence ? Quand l'essence même de la matière nous échappe sans cesse comme un vague mirage éthérique, il est facile de sombrer dans l'irrationalité ou les pseudosciences, ce qui au bout du compte nous éloigne de la vérité. Il est plus logique d'admettre que nous ne disposons pas encore de toutes les données du problème, nous avons de bons outils avec la théorie quantique, et son exactitude fut maintes fois vérifiée avec succès. Si notre monde semble aussi réel c'est uniquement une question d'échelle. Je terminerai par une citation : « Les progrès de la science s'obtiennent souvent par la remise en question de dogmes qui semblent solidement établis... ».