background preloader

Quantum physics says goodbye to reality

Quantum physics says goodbye to reality
Some physicists are uncomfortable with the idea that all individual quantum events are innately random. This is why many have proposed more complete theories, which suggest that events are at least partially governed by extra "hidden variables". Now physicists from Austria claim to have performed an experiment that rules out a broad class of hidden-variables theories that focus on realism -- giving the uneasy consequence that reality does not exist when we are not observing it (Nature 446 871). Some 40 years ago the physicist John Bell predicted that many hidden-variables theories would be ruled out if a certain experimental inequality were violated – known as "Bell's inequality". Bell's trick, therefore, was to decide how to orient the polarizers only after the photons have left the source. Many realizations of the thought experiment have indeed verified the violation of Bell's inequality.

Quantum Mechanics and Reality, by Thomas J McFarlane © Thomas J. McFarlane 1995www.integralscience.org Most traditional [spiritual] paths were developed in prescientific cultures. Consequently, many of their teachings are expressed in terms of cosmologies or world views which we no longer find relevant. . .The question then naturally arises: Is it possible to incorporate both science and mysticism into a single, coherent world view? . . .Up until the first quarter of the twentieth century science was wedded to a materialist philosophy which was inherently antagonistic to all forms of religious insight. With the advent of quantum physics, however, this materialist philosophy has become scientifically untenable. The primary purpose of this essay is to explain how quantum mechanics shows that the materialistic common sense notion of reality is an illusion, i.e., that the objective existence of the world is an illusion. Now listen to Niels Bohr, the pioneer of 20th century physics: Consider the words of Shankara, the famous Hindu philosopher:

How Quantum Mechanics Screws with our Perception of Reality The Search For The History Of The Universe's Light Emission The light emitted from all objects in the Universe during its entire history - stars, galaxies, quasars etc. forms a diffuse sea of photons that permeates intergalactic space, referred to as "diffuse extragalactic background light" (EBL). Scientists have long tried to measure this fossil record of the luminous activity in the Universe in their quest to decipher the history and evolution of the Cosmos, but its direct determination from the diffuse glow of the night sky is very difficult and uncertain. Very high energy (VHE) gamma-rays, some 100,000,000,000 times more energetic than normal light, offer an alternative way to probe this background light, and UK researchers from Durham University in collaboration with international partners used the High Energy Stereoscopic System (HESS) gamma-ray telescopes in the Khomas Highlands of Namibia to observe several quasars (the most luminous VHE gamma-ray sources known) with this goal in mind. Source: PPARC

Alice in Quantumland: A Charming Illustrated Allegory of Quantum Mechanics by a CERN Physicist by Maria Popova Down the rabbit hole of antimatter, or how to believe six impossible things about gender stereotypes before breakfast. As a lover of science and of all things Alice in Wonderland, imagine my delight at discovering Alice in Quantumland: An Allegory of Quantum Physics (public library) — an imaginative and unusual 1995 quantum primer by particle physicist Robert Gilmore, who has under his belt experience at Stanford and CERN. Besides the clever concept, two things make the book especially remarkable: It flies in the face of gender stereotypes with a female protagonist who sets out to make sense of some of the most intense science of all time, and it features Gilmore’s own magnificent illustrations for a perfect intersection of art and science, true to recent research indicating that history’s most successful scientists also dabbled in the arts. Gilmore writes in the preface: In the first half of the twentieth century, our understanding in the Universe was turned upside down.

Dark Matter: The Larger Invisible Universe | Joe Arrigo PERSPECTIVE Normal matter—you, me, oatmeal, mountains, oceans, moons, planets, galaxies—make up about twenty-percent of the universe; the other eighty-percent is dark matter—star-stuff we cannot see or detect…yet. Why are scientists so certain this enigmatic matter exists? Because the evidence permeates the universe, first observed by Fritz Zwicky, when he measured the motions of galaxies and calculated that there wasn’t enough visible matter to affect galaxies to extent they were being pulled around.WWWFirst, there isn’t enough gravitational force within galaxies to bind and hold them in their current formation; then there is an invisible element that keeps them rotating faster than scientists would expect, clusters of galaxies bend and distort light more than they should, and supercomputer simulations exhibit that clouds of ordinary matter in the early universe did not have enough gravity to create the tight formations of galaxies we now see.

Golden Ratio Discovered in the Quantum World | Science By Rakefet TavorEpoch Times Staff Created: January 19, 2010 Last Updated: June 17, 2012 PICTURING THE GOLDEN RATIO: Scientists fired neutrons at cobalt niobate particles, finding resonant notes with the golden ratio. (Tennant/HZB) The “golden ratio,” which is equal to approximately 1.618, can be found in various aspects of our life, including biology, architecture, and the arts. But only recently was it discovered that this special ratio is also reflected in nanoscale, thanks to researchers from the U.K.’s Oxford University, University of Bristol, and Rutherford Appleton Laboratory, and Germany’s Helmholtz-Zentrum Berlin for Materials and Energy (HZB). Their research, published in the journal Science on Jan. 8, examined chains of linked magnetic cobalt niobate (CoNb2O6) particles only one particle wide to investigate the Heisenberg Uncertainty Principle. Neutrons were fired at the cobalt niobate particles to detect the resonant notes. Dr.

The Theory of Everything | Joe Arrigo PERSPECTIVE The above equation was written by Dr. Michio Kaku, theoretical physicist, who gradu­ated first in his physics class at Harvard, and, when he was in high school built a 2.3 million electron volt atom-smasher in his parents garage. It is an equation for String Field Theory—a theory that may unite The Theory of Relativity with Quantum Theory, into a uni­fied theory called The Theory of Everything. Theoretical physicists are those scientists who work in that twilight zone cutting edge realm be­tween reality and science fiction. For thirty years Einstein sought a unified theory of physics that would integrate all the forces of nature into a single beautiful tapestry. String Theory says that at the subatomic level, there are vibrating strings—that particles like protons, electrons and quarks are nothing but musical notes on a tiny vibrating string, that all the stupendous activities in the universe are born from a sub-atomic loop of energy deep within all matter. © Joe Arrigo

Quantum "spooky action at a distance" travels at least 10,000 times faster than light Quantum entanglement, one of the odder aspects of quantum theory, links the properties of particles even when they are separated by large distances. When a property of one of a pair of entangled particles is measured, the other "immediately" settles down into a state compatible with that measurement. So how fast is "immediately"? Despite playing a vital role in the development of quantum theory, Einstein felt philosophically at odds with its description of how the universe works. Niels Bohr and Albert Einstein debating quantum theory in the mid 1920s In 1935 Einstein and his coworkers discovered quantum entanglement lurking in the equations of quantum mechanics, and realized its utter strangeness. Einstein, as the primary prophet of relativity theory, was revolted by the notion of nonlocality, and hence regarded the EPR result as a demonstration that underlying quantum mechanics was a deterministic hidden-variable theory. Space-time diagram of Prof.

In a "Rainbow" Universe Time May Have No Beginning What if the universe had no beginning, and time stretched back infinitely without a big bang to start things off? That's one possible consequence of an idea called "rainbow gravity," so-named because it posits that gravity's effects on spacetime are felt differently by different wavelengths of light, aka different colors in the rainbow. Rainbow gravity was first proposed 10 years ago as a possible step toward repairing the rifts between the theories of general relativity (covering the very big) and quantum mechanics (concerning the realm of the very small). The idea is not a complete theory for describing quantum effects on gravity, and is not widely accepted. According to Einstein's general relativity, massive objects warp spacetime so that anything traveling through it, including light, takes a curving path. The effects would usually be tiny, so that we wouldn't notice the difference in most observations of stars, galaxies and other cosmic phenomena. Yet the concept has its critics.

Quantum bounce could make black holes explode A. Corichi/J.P. Ruiz The collapse of a star into a black hole could be a temporary effect that leads to the formation of a 'white hole', suggests a new model based on a theory known as loop quantum gravity. Black holes might end their lives by transforming into their exact opposite — 'white holes' that explosively pour all the material they ever swallowed into space, say two physicists. The theory suggests that the transition from black hole to white hole would take place right after the initial formation of the black hole, but because gravity dilates time, outside observers would see the black hole lasting billions or trillions of years or more, depending on its size. Albert Einstein’s general theory of relativity predicts that when a dying star collapses under its own weight, it can reach a stage at which the collapse is irreversible and no known force of nature can stop it. In a loop Information paradox All in the timing

Four things you might not know about dark matter Not long after physicists on experiments at the Large Hadron Collider at CERN laboratory discovered the Higgs boson, CERN Director-General Rolf Heuer was asked, “What’s next?” One of the top priorities he named: figuring out dark matter. Dark matter is five times more prevalent than ordinary matter. It seems to exist in clumps around the universe, forming a kind of scaffolding on which visible matter coalesces into galaxies. The nature of dark matter is unknown, but physicists have suggested that it, like visible matter, is made up of particles. Dark matter shows up periodically in the media, often when an experiment has spotted a potential sign of it. Here are four facts to get you up to speed on one of the most exciting topics in particle physics: 1. Illustration by: Sandbox Studio, Chicago At this moment, several experiments are on the hunt for dark matter. 2. Several experiments are searching for dark matter, and some of them may have even already found it. 3. 4.

Related: