Controverse sur la paternité de la relativité Un article de Wikipédia, l'encyclopédie libre. La controverse sur la paternité de la relativité remet en cause l'attribution de la relativité restreinte, de la relativité générale et de l'équation E=mc2 à Albert Einstein. Cette attribution est généralement admise, ce qui ne signifie pas que les savants qui ont travaillé sur ces sujets et ont apporté des avancées substantielles à la même époque soient pour autant ignorés dans les présentations de ces théories. Comprendre l'importance du rôle de chacun est une question délicate d'histoire des sciences et qui fait souvent l'objet de débats. Dans certains cas, les thèses sont allées jusqu'à l'accusation de plagiat contre Einstein et de cabale des chercheurs allemands selon Jules Leveugle. Controverses au sujet de la théorie de la relativité restreinte[modifier | modifier le code] Citations des protagonistes de l'époque[modifier | modifier le code] Lorentz à Einstein en 1915[1] : Einstein en 1907[2] : Lorentz en 1921[3] : Einstein en 1946[4] :
Théorie quantique des champs Un article de Wikipédia, l'encyclopédie libre. Les photons QFT ne sont pas considérés comme des « petites boules de billard » ils sont considérés comme des champs quantiques – nécessairement coupés en ondulations dans un champ, ou des « excitations », qui 'ressemblent' à des particules. Le fermion, comme l'électron, peut seulement être décrit comme des ondulations/excitations dans un champ, quand chaque sorte de fermion a son propre champ. En résumé, la visualisation classique de « tout est particules et champ », dans la théorie quantique des champs, se transforme en « tout est particules », puis « tout est champs ». à la fin, les particules sont considérées comme des états excités d'un champ (champ quantique). Historique[modifier | modifier le code] La théorie quantique des champs prend ses origines dans les années 1920 lorsqu'est survenu le problème de la création d'une théorie quantique du champ électromagnétique. Champs quantiques[modifier | modifier le code] (Le facteur Par exemple,
Corps noir Un article de Wikipédia, l'encyclopédie libre. En physique, un corps noir désigne un objet idéal dont le spectre électromagnétique ne dépend que de sa température. Le nom corps noir a été introduit par le physicien Gustav Kirchhoff en 1862. Le modèle du corps noir[modifier | modifier le code] Le corps noir est un objet idéal qui absorberait toute l'énergie électromagnétique qu'il recevrait, sans en réfléchir ni en transmettre. La lumière étant un rayonnement électromagnétique, elle est absorbée totalement et l'objet éclairé devrait donc apparaître noir, d'où son nom. L'objet réel qui se rapproche le plus de ce modèle est l'intérieur d'un four. Chaque paroi du four émet et absorbe du rayonnement. Le spectre « continu » (donc en négligeant les raies spectrales) des étoiles (ou en tous cas de la grande majorité des étoiles ni trop froides ni trop chaudes, comme le Soleil) est un spectre de corps noir. Les lois du corps noir[modifier | modifier le code] avec en W.m-2.sr-1.m-1.
Matière noire Un article de Wikipédia, l'encyclopédie libre. Cet article concerne la matière de nature inconnue. Pour le film, voir Dark Matter. La matière noire (ou matière sombre), traduction de l'anglais dark matter, désigne une catégorie de matière hypothétique jusqu'à présent non détectée, invoquée pour rendre compte d'observations astrophysiques, notamment les estimations de masse des galaxies et des amas de galaxies et les propriétés des fluctuations du fond cosmologique. Différentes hypothèses sont émises et explorées sur la composition de cette hypothétique matière noire : gaz moléculaire, étoiles mortes, naines brunes en grand nombre, trous noirs, etc. La matière noire aurait pourtant une abondance au moins cinq fois plus importante que la matière baryonique, pour constituer environ 24 %[2] de la densité d'énergie totale de l'Univers observable[3], selon les modèles de formation et d'évolution des galaxies, ainsi que les modèles cosmologiques. Premiers indices[modifier | modifier le code]
Vide quantique Un article de Wikipédia, l'encyclopédie libre. Pour les articles homonymes, voir Vide. Pour le physicien le vide a toujours été une notion extrêmement difficile à définir. La physique quantique, en particulier, vient compliquer la définition du vide. Il est possible de considérer qu'un système dans le vide est isolé, c’est-à-dire non perturbé par une force extérieure. Néanmoins la mécanique quantique prévoit de nombreux effets apparaissant dans le vide, on parle alors de vide quantique. Inégalité d'Heisenberg[modifier | modifier le code] Les inégalités d'Heisenberg (plus connues sous le nom de principe d'incertitude) sont une conséquence directe de la dualité onde-corpuscule. où ℏ est la Constante de Planck normalisée. Fluctuation du vide et création de paires de particules[modifier | modifier le code] L'équation la plus célèbre de la physique traduit l'équivalence entre masse et énergie. Fluctuation du vide et force de Casimir[modifier | modifier le code] Portail de la physique
Mer de Dirac Un article de Wikipédia, l'encyclopédie libre. La Mer de Dirac est un concept métaphorique représentant le vide quantique, proposé par le physicien britannique Paul Dirac (1902-1984). Figure 1 : Le vide est représenté par une « mer » allant d'une profondeur infinie d'énergie négative jusqu'à une valeur maximale considérée comme le zéro de l'énergie. Description[modifier | modifier le code] Paul Dirac suggéra que l'on considère le vide quantique non comme un milieu désertique, mais comme une mer d'électrons de profondeur infinie où chaque électron occuperait un niveau d'énergie propre, s'étalant sur une échelle allant de l'infini négatif jusqu'à une certaine valeur maximale. Cette valeur maximale étant considérée comme le « niveau de la mer », autrement dit l'état fondamental, le zéro de l'énergie qui est la base pour définir toutes les autres (Figure 1). Voir aussi[modifier | modifier le code] Articles connexes[modifier | modifier le code] Liens externes[modifier | modifier le code]
Théorie des supercordes Un article de Wikipédia, l'encyclopédie libre. Vue d'artiste de la théorie des supercordes Actuellement, le problème le plus fondamental en physique théorique est la grande unification, ou, autrement dit, l'harmonisation de la théorie de la relativité générale, qui décrit la gravité, et s'applique bien aux grandes structures (étoiles, planètes, galaxies), et de la mécanique quantique qui décrit les trois autres forces fondamentales connues : électromagnétique (EM), l'interaction faible (W) et forte (S). La physique des particules élémentaires modélise celles-ci comme des points dans l'espace et les fait interagir à distance nulle, ce qui amène à des résultats de valeurs infinies. Les physiciens ont développé des techniques mathématiques, dites de renormalisation, pour éliminer ces infinis, qui fonctionnent pour les forces électromagnétiques, nucléaire forte et nucléaire faible, mais pas pour la gravité : à distance nulle la théorie de la gravité d'Einstein ne fonctionne pas.
Théorie des cordes Un article de Wikipédia, l'encyclopédie libre. Les niveaux de grossissements : monde macroscopique, monde moléculaire, monde atomique, monde subatomique, monde des cordes. La théorie des cordes est un domaine actif de recherche traitant de l'une des questions de la physique théorique : fournir une description de la gravité quantique c’est-à-dire l’unification de la mécanique quantique et de la théorie de la relativité générale. La principale particularité de la théorie des cordes est que son ambition ne s’arrête pas à cette réconciliation, mais qu’elle prétend réussir à unifier les quatre interactions élémentaires connues, on parle de théorie du tout. La théorie des cordes a obtenu des premiers résultats théoriques partiels. Présentation élémentaire du problème[modifier | modifier le code] Il reste que certains phénomènes nécessiteraient l'utilisation des deux théories. Hypothèses et prédictions[modifier | modifier le code] La théorie repose sur deux hypothèses : Le graviton, boson (c.