background preloader

Cryptographic hash function

Cryptographic hash function
In cryptography, SHA-1 is a cryptographic hash function designed by the United States National Security Agency and is a U.S. Federal Information Processing Standard published by the United States NIST.[2] SHA-1 produces a 160-bit (20-byte) hash value. A SHA-1 hash value is typically rendered as a hexadecimal number, 40 digits long. SHA stands for "secure hash algorithm". The four SHA algorithms are structured differently and are named SHA-0, SHA-1, SHA-2, and SHA-3. SHA-1 is the most widely used of the existing SHA hash functions, and is employed in several widely used applications and protocols. In 2005, cryptanalysts found attacks on SHA-1 suggesting that the algorithm might not be secure enough for ongoing use.[3] NIST required many applications in federal agencies to move to SHA-2 after 2010 because of the weakness.[4] Although no successful attacks have yet been reported on SHA-2, it is algorithmically similar to SHA-1. The SHA-1 hash function[edit] denotes addition modulo 232. or

crypto hier et demain {*style:<b>Histoire et usage de la Cryptographie </b>*} Par le Dr. Steven Perry 1. 2. 3. 4. Ce petit essai se veut un rapide panorama des méthodes actuelles de cryptographie. Mon ouvrage présente tout d'abord une définition de la cryptographie afin que tout le monde parle de la même chose. Je vous souhaite une agréable lecture. De tous temps, les services secrets ont utilisé toutes sortes de codages et de moyens cryptographiques pour communiquer entre agents et gouvernements, de telle sorte que les "ennemis" ne puissent pas comprendre les informations échangées. De nos jours en revanche, il y a de plus en plus d'informations qui doivent rester secrètes ou confidentielles. C'est pourquoi ce genre d'informations est crypté. Finalement, la cryptologie est de plus en plus utilisée sur la Matrice. A partir de 2012, la cryptographie a fait un bond en avant avec les découvertes de Rahjiv Slimann. 2.1 Le chiffrement actuel 2.2 Les algorithmes à clé privé ou à clé secrète 2.5.1 Les attaques passives

This is a fast software implementation in C of the FIPS 180-2 hash algorithms SHA-224, SHA-256, SHA-384 and SHA-512. The code is distributed under the BSD license. For each algorithm the implementation has been verified with the NIST test vectors and with the additional vectors provided by Aaron D. Gifford. News: February 2, 2007: Add new optimizations and minor bug fix. May 23, 2005: Include support of SHA-224. April 30, 2005: First release. Download: sha2.tar.gz github: Users: This SHA-2 version is used in Adobe AIR (see license file), in Cisco ASA 5500 Series Software (license), in HP Compliance Log Warehouse (license), or in Yahoo! Compilation options: There is an UNROLL_LOOPS option which is disabled by default. Performances: SHA-256 can achieve hashing at 27 cycles per byte for long size data on a Pentium 4 with the Intel compiler. Arch: Pentium 4 (Prescott), compiler: icc 8.1, compiler options: -O2 -xP -ip, software options: -DUNROLL_LOOPS Portability:

Secure Quick Reliable Login The first time you use SQRL the app will require you to invent a master password, from which a Master Key is cryptographically generated. This Key is a 256-bit (very very large) random number, unique and never shared. Additionally the first time using SQRL a public Identity Lock Key and a private Identity Unlock Key pair are generated via the SQRL app. The Identity Lock Key is stored alongside the Master Key but the Identity Unlock Key must be safely stored away (such as printing it as a QR code) prior to being deleted from the app. The Identity Unlock Key is used to cancel and replace your Master Key in the event that it is compromised. When you visit a SQRL enabled website the QR code/link contains the website address and a random cryptographic challenge number. The SQRL app hashes the website address and your Master Key together to create a website unique identity. Once the signed random cryptographic challenge is verified by the website it is then able to authenticate your device.

culte "mère universelle" (Déesse) Un article de Wikipédia, l'encyclopédie libre. Les expressions modernes Déesse Mère ou Grande Déesse font référence à divers cultes qui auraient été rendus à une « mère universelle » du paléolithique à aujourd’hui[1]. Des dénominations semblables existent dans les autres langues : Mother Goddesse, Magna Mater, Grande Madre... Ces expressions renvoient à un culte primitif de la fertilité qui aurait été universellement pratiqué à la fin de la préhistoire. Ce culte, dans lequel la figure de la femme tenait une grande place et revêtait une dimension sacrée, consistait essentiellement en une vénération de la Terre, de la fertilité et de la fécondité. Certains mouvements panthéistes ou néopaganistes, voire féministes, présentent la déesse mère comme une divinité précédant historiquement les dieux masculins des religions abrahamiques. Origines archéologiques[modifier | modifier le code] Statue menhir, la Dame de Saint-Sernin, au musée Fenaille de Rodez Peuple basque[modifier | modifier le code]

/cfAES: Compact Framework and Rijndael / AES 7/19/2004 Introduction the table below shows the different crypto algorithms listed on the left, and where they live. X means that it is supported, 0 means partial support. you can see that System.Security.Cryptography for CFv2 is going to lack many algorithms compared to the desktop. OpenNETCF 1.2 and the /cfAes library are intended to be used together, to provide almost all of the crypto functionality of .NET 2005 (desktop) RijndaelManaged, RijndaelCryptoServiceProvider 1st off, i think it is pronounced 'rain doll' :) i'm not certain of the history, but Rijndael and AES are related. something to the effect of Rijndael being the candidate for what is now known as AES. AES, EBC, NoPadding, KeyWrap the Rijndeal implementations above were tested against WSE 2.0. TripleDesEx, NoPadding, KeyWrap the TripleDES KeyWrap implementation was brought over from the WSE bits (where it was tested). SHA256Managed, SHA384Managed, SHA512Managed, SHA1Managed SecureString

authentication - Could SQRL really be as secure as they say Overall, the protocol does not appear to increase security over existing technology. If you are looking for the best way to protect your identity online, this is without question not it. But let's go over the pros and cons: It's impossible to "share" a password in the narrow sense that a malicious website can't use the authentication provided to one site to log in to another site. A brute-force attack against the authentication token is not feasible. Credentials are not stored on your computer. This technique is dangerously susceptible to MITM attacks and social engineering. So, for example, a phishing site can display an authentic login QR code which logs in the attacker instead of the user. This technique combines both authentication and identity into a physical object which is frequently lost or stolen. This technique combines all your authentication tokens into a single key unless you manually create others.

Cyborg Anthropology CertCreateSelfSignCertificate Function Syntax PCCERT_CONTEXT WINAPI CertCreateSelfSignCertificate( _In_opt_ HCRYPTPROV_OR_NCRYPT_KEY_HANDLE hCryptProvOrNCryptKey, _In_ PCERT_NAME_BLOB pSubjectIssuerBlob, _In_ DWORD dwFlags, _In_opt_ PCRYPT_KEY_PROV_INFO pKeyProvInfo, _In_opt_ PCRYPT_ALGORITHM_IDENTIFIER pSignatureAlgorithm, _In_opt_ PSYSTEMTIME pStartTime, _In_opt_ PSYSTEMTIME pEndTime, PCERT_EXTENSIONS pExtensions ); Parameters hCryptProvOrNCryptKey [in, optional] pSubjectIssuerBlob [in] dwFlags [in] A set of flags that override the default behavior of this function. pKeyProvInfo [in, optional] If the pKeyProvInfo parameter is not NULL, the corresponding values are set in the CERT_KEY_PROV_INFO_PROP_ID value of the generated certificate. pSignatureAlgorithm [in, optional] pStartTime [in, optional] pEndTime [in, optional] pExtensions [optional] Return value Requirements See also

Diffie–Hellman key exchange The scheme was first published by Whitfield Diffie and Martin Hellman in 1976.[2] By 1975, James H. Ellis,[3] Clifford Cocks and Malcolm J. Williamson within GCHQ, the British signals intelligence agency, had also shown how public-key cryptography could be achieved; however, their work was kept secret until 1997.[4] Although Diffie–Hellman key agreement itself is an anonymous (non-authenticated) key-agreement protocol, it provides the basis for a variety of authenticated protocols, and is used to provide perfect forward secrecy in Transport Layer Security's ephemeral modes (referred to as EDH or DHE depending on the cipher suite). U.S. Name[edit] In 2002, Hellman suggested the algorithm be called Diffie–Hellman–Merkle key exchange in recognition of Ralph Merkle's contribution to the invention of public-key cryptography (Hellman, 2002), writing: The system...has since become known as Diffie–Hellman key exchange. Description[edit] Illustration of the Diffie–Hellman Key Exchange , and . .

concile de Trente Destiné à l’origine à restaurer l’unité de l’Église, ce concile fut en réalité une réponse du catholicisme à la Réforme protestante, à travers la révision de sa discipline et la réaffirmation solennelle de certains dogmes. Explication. Pourquoi est-il convoqué ? Depuis le Moyen Âge, le concile est considéré comme l’organe idéal du gouvernement de l’Église. Cette instance, dont le pouvoir est jugé, par certains, supérieur au pape, est censée réformer abus et injustices dans le fonctionnement de l’Église. Ce qui explique que la papauté ait été extrêmement réticente devant la réunion d’un concile. C’est Luther lui-même qui lance, le 15 septembre 1518, puis le 11 octobre 1520, les premiers appels au concile, afin d’arbitrer son conflit avec la papauté. Paul III tente de réunir le concile à plusieurs reprises, mais ce n’est qu’en 1545 qu’il y parvient. Comment s’est-il déroulé ? Le dix-neuvième concile reconnu par l’Église catholique romaine fut extrêmement heurté.

Related: