background preloader

Nombre d'or et étoile à cinq branches

Nombre d'or et étoile à cinq branches

Récréomath Site de mathématiques récréatives Les propriétés des figures géométriques Consigne 1. Choisis ton niveau. 2. Retrouve la figure géométrique qui correspond aux propriétés énoncées. Fiche sur les propriétés des figures géométriques Exploitation pédagogique Ce jeu de géométrie est un bon moyen pour revoir les propriétés des figures géométriques de manière ludique. Dernière chose: l'idée a été soufflée par Tini : élève de CM2. Mise en ligne 11 juin 2015 Mise à jour 9 mars 2017 : passage au html5. Liens avec les compétences du socle commun nombre d'or Le nombre d’or existe. Il s’agit de la proportion selon laquelle le rapport entre deux parties est égal au rapport entre la plus grande de ces parties et le tout. C’est un nombre irrationnel : (1 + √5) / 2. Soit 1,618039887... et un nombre infini de décimales. Je renvoie à l'article "nombre d'or" de wikipédia ou au Que sais-je ? Car, de ce nombre, bien des usages sont faits qui sortent de la mathématique. Le nombre d’or dans l’art et l’architecture. Les premiers lieux communs concernent l’art et notamment l’architecture : il y en a cinq principaux. Il importe aussi d'être précis. 1) Les pyramides. Sur la quarantaine de pyramides royales égyptiennes recensées, près de trente sont pyramidales. Sous l’Ancien Empire, de la fin de la troisième dynastie à la fin de la 6e, on en connaît seize. La seconde génération de pyramides est érigée sous la douzième dynastie, au Moyen Empire. La dernière pyramide où on trouve le nombre d’or date d'environ 2500 avant l’ère chrétienne. 3) Le Parthénon. Ah !

Questions flash CM 1 Nombres relatifs : additions & soustractions CM 2 Nombres relatifs : Multiplications CM 3 Nombres relatifs : Divisions CM 4 Théorème de Pythagore CM 5 Nombres relatifs CM 6 Calcul algébrique CM 7 Proportionnalité CM 8 Appliquer un pourcentage (source : Le Matou Matheux) CM 9 Calculer un pourcentage Le nombre d'or dans l'architecture grecque : mythe ou réalité ? Filles des nombres d’or, Fortes des lois du ciel, Sur nous tombe et s’endort, Un Dieu couleur de miel. Paul Valéry, « Cantique des Colonnes ». Le nombre d’or est un nombre égal à (1+√5)/2, soit environ 1,618 et correspond à une proportion considérée comme particulièrement esthétique. Il apparaît dans la pensée grecque avec Pythagore, au tournant du VIème et du Vème siècle avant J.-C. mais Euclide, dans ses Eléments, est le premier à développer une théorie de ce nombre dans le passage où il tente de définir la façon la plus logique de couper harmonieusement un segment en deux parties inégales. Cette proportion, pour de nombreux artistes comme Léonard de Vinci ou encore Le Corbusier -pour ne citer que les plus célèbres-, donnerait la clef de l’harmonie d’une œuvre d’art. Mais dans quelle mesure n’y a-t-il pas là un mythe architectural ? Quelques propriétés mathématiques La section d’or La célèbre suite de Fibonacci, mathématicien du XIIIème siècle, entretient des liens étroits avec φ. P.

La preuve vue par Cédric Villani, mathématicien Chargement de la playlist en cours... Cédric Villani, mathématicien, nous explique la preuve. Une preuve est un mot qui revient souvent dans les débats, les enquêtes policières, les procès. « Vous avez la preuve de ce que vous avancez ? Réalisateur(s) : Momoko Seto Producteur(s) : Académie des sciences / Ecce Films Année : 2016

Phi - Le Nombre d'Or - La Divine Porportion - l'ADN Divin Les Romains, les Grecs, les Juifs et les Egyptiens semblaient tous d'accord : 1,618 était le nombre d'or, le nombre de l'harmonie universelle, le nombre de la création, le nombre de Dieu, le Créateur. Lle nombre utilisé partout dans l'ordre caché de la Création et qu'il fallait donc employer dans les édifices dédiés au Créateur afin de s'en rapprocher. Empreint de mystère, objet d'un culte tantôt religieux, tantôt magique, le nombre d'or influence la vision occidentale de l'harmonie. Chez les Grecs, avec le développement de la géométrie, la secte secrète des pythagoriciens en avait fait un symbole d'harmonie universelle, de vie, d'amour et de beauté. Le nombre d'Or est appelé Phi On le désigne par la lettre grecque ( phi ) en hommage au sculpteur grec Phidias (né vers 490 et mort vers 430 avant J.C) qui décora le Parthénon à Athènes. Il y a 10 000 ans : Première manifestation humaine de la connaissance du nombre d'or dans le Temple d'Andros (découvert sous la mer des Bahamas). Euclide

Le théorème de Pythagore : Petits contes mathématiques Sans le théorème de Pythagore, il n'y aurait pas de philosophes, pas de réciproques du théorème, pas de triangle rectangle et donc pas d'angles droits, pas de maison qui se tiendrait bien droite, au carré, tout serait de travers... et bien d'autres choses encore. Pythagore est né en Grèce au VIe siècle avant J.-C. Découvrez en pratique l'utilisation du théorème de Pythagore avec les héros de Simplex. Réalisateur : Clémence Gandillot; Aurélien Rocland Producteur : Goldenia Studios; France Télévisions; Universcience Diffuseur : Curiosphere.tv Production : 2012 PYTHAGORE de Samos Détails Affichages : 132615 PYTHAGORE de Samos. Naissance: vers 569 av.J-C. à Samos, Ionie - Mort: vers 475 av.J.-C. à Crotone ? Sa vie. D'une génération plus jeune que Thalès, il aurait vécu dans la seconde moitié du 6ème siècle av. 1. Né à Samos (Grèce), Pythagore avait 18 ans lorsqu'il participa aux Jeux olympique et remporta toutes les compétitions de pugilat (sport de l' antiquité comparable à la boxe, mais dans lequel les combattants portaient au poing un gantelet garni de fer ou de plomb, la ceste). En Ionie toute proche, il passa quelques années auprès de Thalès et de son élève Anaximandre (v. 610 BC - v. 546 BC).Puis en Syrie, il séjourna avec les sages Vénitiens qui l' initièrent aux mystères de Byblos.Puis au mont Carmel, dans le Liban d' aujourd'hui.De là, il s' embarqua pour l' Égypte et y resta 20 années. Lorsque les Perses envahirent le pays, il se serait retrouvé prisonnier et emmené à Babylone. Pythagore a acquis ses connaissances mathématiques au cours de ses voyages.

Worksheet Mathématiques en Quatrième - Collège Vous pouvez travailler sur cette feuille. Les notes seront prises en compte jusqu'au 15 août 2100 L'enregistrement des notes est ouvert. Exercices Dénominateur manquant Trouver le dénominateur d'une fraction pour qu'elle soit égale à une autre fraction.

Related: