background preloader

Fractal

Fractal
Figure 1a. The Mandelbrot set illustrates self-similarity. As the image is enlarged, the same pattern re-appears so that it is virtually impossible to determine the scale being examined. Figure 1b. The same fractal magnified six times. Figure 1c. Figure 1d. Fractals are distinguished from regular geometric figures by their fractal dimensional scaling. As mathematical equations, fractals are usually nowhere differentiable.[2][5][8] An infinite fractal curve can be conceived of as winding through space differently from an ordinary line, still being a 1-dimensional line yet having a fractal dimension indicating it also resembles a surface.[7]:48[2]:15 There is some disagreement amongst authorities about how the concept of a fractal should be formally defined. Introduction[edit] The word "fractal" often has different connotations for laypeople than mathematicians, where the layperson is more likely to be familiar with fractal art than a mathematical conception. History[edit] Figure 2.

http://en.wikipedia.org/wiki/Fractal

Percolation threshold Percolation threshold is a mathematical term related to percolation theory , which is the formation of long-range connectivity in random systems. Below the threshold a giant connected component does not exist; while above it, there exists a giant component of the order of system size. In engineering and coffee making , percolation represents the flow of fluids through porous media, but in the mathematics and physics worlds it generally refers to simplified lattice models of random systems or networks (graphs), and the nature of the connectivity in them.

Fractals in Nature Naturally Occurring Fractals (including plants, rivers, galaxies, clouds, weather, population patterns, stocks, video feedback, crystal growth, etc.) The geometry of Fractals brings us a new appreciation for the natural world and the patterns we observe in it. Many things previously called chaos are now known to follow subtle subtle fractal laws of behavior. So many things turned out to be fractal that the word "chaos" itself (in operational science) had redefined, or actually for the FIRST time Formally Defined as following inherently unpredictable yet generally deterministic rules based on nonlinear iterative equations. Fractals are unpredictable in specific details yet deterministic when viewed as a total pattern - in many ways this reflects what we observe in the small details & total pattern of life in all it's physical and mental varieties, too ....

Agent-based model An agent-based model (ABM) is one of a class of computational models for simulating the actions and interactions of autonomous agents (both individual or collective entities such as organizations or groups) with a view to assessing their effects on the system as a whole. It combines elements of game theory, complex systems, emergence, computational sociology, multi-agent systems, and evolutionary programming. Monte Carlo Methods are used to introduce randomness. A Simple Fractal Model of the Conscious Universe Here's the definition of fractals from Wikipedia: “A fractal is 'a rough or fragmented geometric shape that can be split into parts, each of which is (at least approximately) a reduced-size copy of the whole,' a property called self-similarity... Because they appear similar at all levels of magnification, fractals are often considered to be infinitely complex (in informal terms). Natural objects that are approximated by fractals to a degree include clouds, mountain ranges, lightning bolts, coastlines, snow flakes, various vegetables (cauliflower and broccoli), and animal coloration patterns.”

Cellular automaton The concept was originally discovered in the 1940s by Stanislaw Ulam and John von Neumann while they were contemporaries at Los Alamos National Laboratory. While studied by some throughout the 1950s and 1960s, it was not until the 1970s and Conway's Game of Life, a two-dimensional cellular automaton, that interest in the subject expanded beyond academia. In the 1980s, Stephen Wolfram engaged in a systematic study of one-dimensional cellular automata, or what he calls elementary cellular automata; his research assistant Matthew Cook showed that one of these rules is Turing-complete. Wolfram published A New Kind of Science in 2002, claiming that cellular automata have applications in many fields of science.

Introduction to Quasicrystals This page is meant to be an introduction to the field of Quasicrystals in order to educate the interested reader on some basic concepts in this relatively new branch of Crystallography. The more advanced reader may proceed to other sites and sources on quasicrystals. This page is intended for those having no prior knowledge in this field. In classical crystallography a crystal is defined as a threedimensional periodic arrangement of atoms with translational periodicity along its three principal axes. Thus it is possible to obtain an infinitely extended crystal structure by aligning building blocks called unit-cells until the space is filled up. Normal crystal structures can be described by one of the 230 space groups, which describe the rotational and translational symmetry elements present in the structure.

039;s Center for Social Dynamics and Complexity November 5-6, 2010 2010 Computational Social Science Society Conference September 30 - October 2, 2010 IASC North American Regional Meeting CSDC joins the Consortium for Biosocial Complex Systems Together with the Center for Institutional Diversity and the Mathematical, Computational, and Modeling Sciences Center, the CSDC has been brought into the Consortium for Biosocial Complex Systems under the leadership of Sander van der Leeuw. "Integration is the key to being a leader in solving complex challenges," van der Leeuw says. "You must be able to look at problems holistically, and not just at one point in time, but across time.

Quasicrystal Potential energy surface for silver depositing on an aluminium-palladium-manganese (Al-Pd-Mn) quasicrystal surface. Similar to Fig. 6 in Ref.[1] Aperiodic tilings were discovered by mathematicians in the early 1960s, and, some twenty years later, they were found to apply to the study of quasicrystals. The discovery of these aperiodic forms in nature has produced a paradigm shift in the fields of crystallography. Complex systems Complex systems present problems both in mathematical modelling and philosophical foundations. The study of complex systems represents a new approach to science that investigates how relationships between parts give rise to the collective behaviors of a system and how the system interacts and forms relationships with its environment.[1] Such systems are used to model processes in computer science, biology,[2] economics, physics, chemistry,[3] and many other fields.

Bragg's law Bragg diffraction (also referred to as the Bragg formulation of X-ray diffraction) was first proposed by William Lawrence Bragg and William Henry Bragg in 1913 in response to their discovery that crystalline solids produced surprising patterns of reflected X-rays (in contrast to that of, say, a liquid). They found that these crystals, at certain specific wavelengths and incident angles, produced intense peaks of reflected radiation (known as Bragg peaks). The concept of Bragg diffraction applies equally to neutron diffraction and electron diffraction processes.[1] Both neutron and X-ray wavelengths are comparable with inter-atomic distances (~150 pm) and thus are an excellent probe for this length scale.

Complex adaptive system They are complex in that they are dynamic networks of interactions, and their relationships are not aggregations of the individual static entities. They are adaptive in that the individual and collective behavior mutate and self-organize corresponding to the change-initiating micro-event or collection of events.[1][2] Overview[edit]

are you a fractaloid, or a euclinaut? euclidean bound guesses verses, the infinite iris of the fractal by hyperevolution Jul 21

Related: