background preloader

BOLERO-RAVEL

BOLERO-RAVEL

Religion Religious activities around the world Many religions may have organized behaviors, clergy, a definition of what constitutes adherence or membership, holy places, and scriptures. The practice of a religion may include rituals, sermons, commemoration or veneration (of a deity, gods or goddesses), sacrifices, festivals, feasts, trance, initiations, funerary services, matrimonial services, meditation, prayer, music, art, dance, public service or other aspects of human culture. Etymology Religion (from O.Fr. religion "religious community," from L. religionem (nom. religio) "respect for what is sacred, reverence for the gods,"[11] "obligation, the bond between man and the gods"[12]) is derived from the Latin religiō, the ultimate origins of which are obscure. Many languages have words that can be translated as "religion", but they may use them in a very different way, and some have no word for religion at all. Definitions Theories Origins and development The origin of religion is uncertain.

Philosophy Philosophy is the study of general and fundamental problems, such as those connected with reality, existence, knowledge, values, reason, mind, and language.[1][2] Philosophy is distinguished from other ways of addressing such problems by its critical, generally systematic approach and its reliance on rational argument.[3] In more casual speech, by extension, "philosophy" can refer to "the most basic beliefs, concepts, and attitudes of an individual or group".[4] The word "philosophy" comes from the Ancient Greek φιλοσοφία (philosophia), which literally means "love of wisdom".[5][6][7] The introduction of the terms "philosopher" and "philosophy" has been ascribed to the Greek thinker Pythagoras.[8] Areas of inquiry Philosophy is divided into many sub-fields. Epistemology Epistemology is concerned with the nature and scope of knowledge,[11] such as the relationships between truth, belief, and theories of justification. Rationalism is the emphasis on reasoning as a source of knowledge. Logic

Classical music Montage of some great classical music composers. From left to right: Top row: Antonio Vivaldi, Johann Sebastian Bach, George Frideric Handel, Wolfgang Amadeus Mozart, Ludwig van Beethoven; second row: Gioachino Rossini, Felix Mendelssohn, Frédéric Chopin, Richard Wagner, Giuseppe Verdi; third row: Johann Strauss II, Johannes Brahms, Georges Bizet, Pyotr Ilyich Tchaikovsky, Antonín Dvořák; bottom row: Edvard Grieg, Edward Elgar, Sergei Rachmaninoff, George Gershwin, Aram Khachaturian The term "classical music" did not appear until the early 19th century, in an attempt to distinctly canonize the period from Johann Sebastian Bach to Beethoven as a golden age.[7] The earliest reference to "classical music" recorded by the Oxford English Dictionary is from about 1836.[1][8] Characteristics[edit] Literature[edit] The most outstanding characteristic of classical music is that the repertoire tends to be written down in musical notation, creating a musical part or score. Instrumentation[edit]

Théorie des cordes Un article de Wikipédia, l'encyclopédie libre. Les niveaux de grossissements : monde macroscopique, monde moléculaire, monde atomique, monde subatomique, monde des cordes. La théorie des cordes est un domaine actif de recherche traitant de l'une des questions de la physique théorique : fournir une description de la gravité quantique c’est-à-dire l’unification de la mécanique quantique et de la théorie de la relativité générale. La principale particularité de la théorie des cordes est que son ambition ne s’arrête pas à cette réconciliation, mais qu’elle prétend réussir à unifier les quatre interactions élémentaires connues, on parle de théorie du tout. La théorie des cordes a obtenu des premiers résultats théoriques partiels. Présentation élémentaire du problème[modifier | modifier le code] Il reste que certains phénomènes nécessiteraient l'utilisation des deux théories. Hypothèses et prédictions[modifier | modifier le code] La théorie repose sur deux hypothèses : Le graviton, boson (c.

Chat de Schrödinger Un article de Wikipédia, l'encyclopédie libre. La mécanique quantique est relativement difficile à concevoir car sa description du monde repose sur des amplitudes de probabilité (fonctions d'onde). Ces fonctions d'ondes peuvent se trouver en combinaison linéaire, donnant lieu à des « états superposés ». Cependant, lors d'une opération dite de « mesure » l'objet quantique sera trouvé dans un état déterminé ; la fonction d'onde donne les probabilités de trouver l'objet dans tel ou tel état. C'est la mesure qui perturbe le système – par effet Compton – et le fait bifurquer d'un état quantique superposé (atome à la fois intact et désintégré par exemple… mais avec une probabilité de désintégration dans un intervalle de temps donné qui, elle, est parfaitement déterminée) vers un état mesuré. « L'expérience »[modifier | modifier le code] Principe[modifier | modifier le code] Une illustration de l'expérience dite du chat de Schrödinger. Pourquoi le chat de Schrödinger ? [modifier | modifier le code]

Gödel, Escher, Bach Gödel, Escher, Bach: An Eternal Golden Braid (pronounced [ˈɡøːdəl ˈɛʃɐ ˈbax]), also known as GEB, is a 1979 book by Douglas Hofstadter, described by his publishing company as "a metaphorical fugue on minds and machines in the spirit of Lewis Carroll".[1] By exploring common themes in the lives and works of logician Kurt Gödel, artist M. C. Escher and composer Johann Sebastian Bach, GEB expounds concepts fundamental to mathematics, symmetry, and intelligence. Through illustration and analysis, the book discusses how self-reference and formal rules allow systems to acquire meaning despite being made of "meaningless" elements. It also discusses what it means to communicate, how knowledge can be represented and stored, the methods and limitations of symbolic representation, and even the fundamental notion of "meaning" itself. Structure[edit] GEB takes the form of an interweaving of various narratives. Themes[edit] Puzzles[edit] The book is filled with puzzles. Impact[edit] Translation[edit]

Gödel's incompleteness theorems Gödel's incompleteness theorems are two theorems of mathematical logic that establish inherent limitations of all but the most trivial axiomatic systems capable of doing arithmetic. The theorems, proven by Kurt Gödel in 1931, are important both in mathematical logic and in the philosophy of mathematics. The two results are widely, but not universally, interpreted as showing that Hilbert's program to find a complete and consistent set of axioms for all mathematics is impossible, giving a negative answer to Hilbert's second problem. The first incompleteness theorem states that no consistent system of axioms whose theorems can be listed by an "effective procedure" (i.e., any sort of algorithm) is capable of proving all truths about the relations of the natural numbers (arithmetic). For any such system, there will always be statements about the natural numbers that are true, but that are unprovable within the system. Background[edit] First incompleteness theorem[edit] Diagonalization[edit] B.

Perth, Western Australia As part of Perth's role as the capital of Western Australia, the state's Parliament and Supreme Court are located within the city, as well as Government House, the residence of the Governor of Western Australia. Perth became known worldwide as the "City of Light" when city residents lit their house lights and streetlights as American astronaut John Glenn passed overhead while orbiting the earth on Friendship 7 in 1962.[10][11] The city repeated the act as Glenn passed overhead on the Space Shuttle in 1998.[12][13] Perth came 9th in the Economist Intelligence Unit's August 2012 list of the world's most liveable cities,[14] and was classified by the Globalization and World Cities Research Network in 2010 as a world city.[15] History[edit] Indigenous history[edit] The area where Perth now stands was called Boorloo by the Aborigines living there in 1827 at the time of their first contact with Europeans. Early European sightings[edit] Swan River Colony[edit] Federation and beyond[edit]

Principe de relativité Un article de Wikipédia, l'encyclopédie libre. Le principe de relativité[1] affirme que les lois physiques s'expriment de manière identique dans tous les référentiels inertiels. D'une théorie à l'autre (physique classique, relativité restreinte ou générale), la formulation du principe a évolué et s'accompagne d'autres hypothèses sur l'espace et le temps, sur les vitesses, etc. Certaines de ces hypothèses étaient implicites ou « évidentes » en physique classique, car conformes à toutes les expériences, et elles sont devenues explicites et plus discutées à partir du moment où la relativité restreinte a été formulée. Exemples en physique classique[modifier | modifier le code] Première situation Supposons que dans un train roulant à vitesse constante (sans les accélérations, petites ou grandes, perceptibles dans le cas d'un train réel), un voyageur se tient debout, immobile par rapport à ce train, et tient un objet dans la main. Deuxième situation Conclusion Propriété : soit ( ), alors ( ) et ( ) et

Physique quantique Hiérarchie des systèmes physiques dans l'infiniment petit et domaines scientifiques associés (les nombres indiquent les changements d'échelle entre chaque niveau). La physique quantique est un ensemble de théories physiques nées au XXe siècle, qui décrivent le comportement des atomes et des particules et permettent d'élucider certaines propriétés du rayonnement électromagnétique. Comme la théorie de la relativité, les théories dites « quantiques » marquent une rupture avec ce qu'on appelle maintenant la physique classique, qui regroupe les théories et principes physiques connus au XIXe siècle — notamment la mécanique newtonienne et la théorie électromagnétique de Maxwell —, et qui ne permettait pas d'expliquer certaines propriétés physiques. La physique quantique recouvre l'ensemble des domaines de la physique où l'utilisation des lois de la mécanique quantique est une nécessité pour comprendre les phénomènes en jeu. Histoire[modifier | modifier le code] et autant de donner où L’énergie

Howard Gardner, multiple intelligences and education Howard Gardner, multiple intelligences and education. Howard Gardner’s work around multiple intelligences has had a profound impact on thinking and practice in education – especially in the United States. Here we explore the theory of multiple intelligences; why it has found a ready audience amongst educationalists; and some of the issues around its conceptualization and realization. Contents: introduction · howard gardner – a life · howard gardner on multiple intelligences · the appeal of multiple intelligences · are there additional intelligences? I want my children to understand the world, but not just because the world is fascinating and the human mind is curious. Howard Earl Gardner’s (1943- ) work has been marked by a desire not to just describe the world but to help to create the conditions to change it. One of the main impetuses for this movement has been Howard Gardner’s work. Howard Gardner – a life Howard Gardner was born in Scranton, Pennsylvania in 1943. Mindy L. Conclusion

Related: