background preloader

Le nombre d'or dans la peinture, l'architecture et la nature - Le Nombre D'or

Le nombre d'or dans la peinture, l'architecture et la nature - Le Nombre D'or
De nos jours, nous pouvons dire qu’il existe deux types de nature : la nature végétale et la nature animal. En les examinant de plus près nous pouvons remarquer que toutes deux peuvent présenter la suite de Fibonacci ainsi que les proportions d’Euclide. De ce fait, nous pouvons dire que le nombre d’or est présent partout dans la nature. La suite de Fibonacci fut créée par un célèbre mathématicien italien : Leonardo Fibonacci au XII ème siècle. A travers cette démonstration, nous allons prouver le lien existant entre la suite de Fibonacci et le nombre d’or. Nous avons vu précédemment que la suite de Fibonacci était définie à partir de 0 et 1. Nous pouvons alors poser la relation suivante avec n appartenant à l'ensemble d'entiers naturels (grâce à la définition de la suite de fibonacci exprimé ci-dessus) : Un+2=Un+1 + Un Soit Un+2 - Un+1 - Un De part cette relation, nous pouvons écrire l’équation suivante : x² - x - 1 = 0 Nous pouvons donc résoudre cette équation du second degré : Δ= b²- 4ac

Le nombre d’or, la règle des tiers dopée Bienvenue sur Apprendre la Photo !Si vous êtes nouveau ici, vous voudrez sans doute lire mon guide qui répond aux 5 problèmes courants des débutants : Cliquez ici pour télécharger le guide gratuitement !Merci de votre visite, et à bientôt sur Apprendre la Photo ! :) Si vous avez un peu exploré le blog et vous êtes intéressé à la composition de vos photos, vous avez forcément entendu parler de la règle des tiers. En général, quand on découvre la règle des tiers en débutant la photographie, ça révolutionne un peu notre vision du monde, des images et on finit par découvrir qu’on a passé sa vie à centrer le sujet, et que c’est ce qui donnait des images moches pas top. Et bien aujourd’hui, je vais vous parler d’une règle de composition qui y ressemble un peu, mais qui a encore plus de force. Ah non, tu déconnes ? Pas d’inquiétude, je ne ferai pas dans le compliqué Spirale de phi Ça ressemble à la règle des tiers, ça a l’odeur de la règle des tiers… mais ce n’est pas la règle des tiers !

Nombre d'or et art : mythe ou réalité ? Juin 2006 Depuis l'Antiquité, artistes et philosophes croient à l'existence d'une proportion privilégiée permettant d'obtenir harmonie et beauté. C'est à Euclide que l'on doit les premières traces écrites du fameux nombre d'or. Il vaut (1 + v¬5)/2, soit environ 1,6. Pourquoi nombre d'or ? L'esthétique du rectangle d'or Pour en avoir le cœur net, Fechner un philosophe allemand (1801-1887) soumet à quelques centaines de personnes plusieurs rectangles, chaque personne devant designer le rectangle le plus "attrayant". Seulement plusieurs points viennent mettre en doute ces résultats. Vers 1930, le Roumain Matila Ghyka voit du nombre d'or partout, dans la nature comme dans l'architecture et la peinture. Mais ses mesures sont contestables, approximatives. Par la suite, de nombreux scientifiques ont essayé de valider ou non, cette théorie du nombre d'or. Les secrets du "beau" Impossible donc d'affirmer que le rectangle d'or est le rectangle le plus esthétique.

Le nombre d'or L'Homme de Vitruve de Léonard de Vinci Un nombre étonnant, mystérieux et magique pour avoir fait parler de lui depuis la plus haute antiquité dans de nombreux domaines tels que la géométrie, l’architecture, la peinture, la nature, … Il serait une expression d’harmonie et d’esthétique dans les arts bien que certains lui reproche son caractère ésotérique qui cherche absolument à lui trouver une obscure beauté et qui semble y parvenir ! On le note φ (phi) en hommage au sculpteur grec Phidias (Ve siècle avant J.C.) qui participa à la décoration du Parthénon sur l’Acropole à Athènes. Quant à son nom, il a évolué avec le temps. Le mathématicien et moine franciscain Luca Pacioli (1445 ; 1517) parle de « Divine proportion », plus tard le physicien Johannes Kepler (1571 ; 1630) le désigne comme le « joyau de la géométrie ». Alors que pour Léonard de Vinci, ce sera la « section dorée ». On retrouve des traces du nombre d’or bien avant les grecs. est sa valeur exacte. Le rectangle d'or En algèbre

Le nombre d'or L' histoire ... Il y a 10 000 ans : Première manifestation humaine de la connaissance du nombre d'or (temple d'Andros découvert sous la mer des Bahamas). 2800 av JC : La pyramide de Khéops a des dimensions qui mettent en évidence l'importance que son architecte attachait au nombre d'or. Vè siècle avant J-C. (447-432 av.JC) : Le sculpteur grec Phidias utilise le nombre d'or pour décorer le Parthénon à Athènes, en particulier pour sculpter la statue d'Athéna Parthénos . IIIè siècle avant J-C. : Euclide évoque le partage d'un segment en "extrême et moyenne raison" dans le livre VI des Eléments. 1498 : Fra Luca Pacioli, un moine professeur de mathématiques, écrit De divina proportione ("La divine proportion"). Au XIXème siècle : Adolf Zeising (1810-1876), docteur en philosophie et professeur à Leipzig puis Munich, parle de "section d'or" (der goldene Schnitt) et s'y intéresse non plus à propos de géométrie mais en ce qui concerne l'esthétique et l'architecture.

Nombre d'or Le nombre d'or (ou section dorée, proportion dorée, ou encore divine proportion) est une proportion définie initialement en géométrie comme l'unique rapport a/b entre deux longueurs a et b telles que le rapport de la somme a + b des deux longueurs sur la plus grande (a) soit égal à celui de la plus grande (a) sur la plus petite (b), ce qui s'écrit : avec Le découpage d'un segment en deux longueurs vérifiant cette propriété est appelé par Euclide découpage en « extrême et moyenne raison ». Le nombre d'or est maintenant souvent désigné par la lettre φ ou (phi), et il est lié à l'angle d'or. Ce nombre irrationnel est l'unique solution positive de l'équation φ2 = φ + 1. L'histoire de cette proportion commence à une période de l'Antiquité qui n'est pas connue avec certitude ; la première mention connue de la division en extrême et moyenne raison apparaît dans les Éléments d'Euclide. Le nombre d'or possède une première définition d'origine géométrique, fondée sur la notion de proportion : .

Rectangles - Insolites Construisons une suite de rectangles définie de la manière suivante. On part d'un rectangle quelconque. Sur son grand côté on construit un carré; ensuite en tournant toujours dans le même sens, on accole un carré sur le grand côté du rectangle obtenu à l'étape précédente; on poursuit indéfiniment l'opération. Que peut-on dire des figures obtenues ? Si a0 et a1 sont les côtés du rectangle initial, les côtés du deuxième rectangle seront a1 et a2=a1+a0; de proche en proche on obtient an+1=an+an−1. En particulier si a0=a1=1 on reconnaît la célèbre suite de Fibonacci: 1, 1, 2, 3, 5, 8, 13, 21... Quel que soit le rectangle de départ, à une étape suffisamment grande de la construction on ne pourra plus "distinguer" celui-ci; le rectangle obtenu possédera une propriété particulière: si on lui enlève un carré construit sur son petit côté, il reste un rectangle semblable au rectangle précédent. Calculons les proportions de ce rectangle, dit "rectangle d'or". x−1=1x ou x2−x−1=0 x=11+1x x=11+11+11+...

Nombre d'or et géométrie C'est par la géométrie que nous pouvons approcher le nombre d’or. Le rectangle d’or Un rectangle est dit d'or quand la proportion des deux côtés est égale au nombre d'or. La spirale d’or Le langage mathématique a étudié et décrit de nombreuses variétés de spirales. Le pentagramme Le pentagramme, c'est-à-dire la figure composée de cinq diagonales du pentagone (cf figure à droite), contient aussi de multiples proportions de moyenne et d'extrême raison. Cette étoile à cinq branches est liée également au nombre d’or. Le polyèdre Le polyèdre est une figure solide à trois dimensions, dont les faces sont des polygones qui se rencontrent selon des segments de droites appelés arêtes. La Suite de Fibonacci Au moyen âge, le mathématicien Léonardo Pisano est l’auteur d’une suite de nombres : 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, etc., dans laquelle chacun d’eux est la somme des deux précédents.

Related: