background preloader

La Physique-Chimie - Découverte de la radioactivité

La Physique-Chimie - Découverte de la radioactivité

Animations flash Topographie du champ magnétostatique (Animation Flash) Le champ magnétostatique est une modification de l'espace, dûe à la présence d'aimants ou de courants électriques. L'animation permet de visualiser cette modification, en simulant l'apparition de petits détecteurs de champ magnétique (grains de limaille de fer). On observe ainsi le spectre du champ magnétostatique . Manipulation lorsqu'on clique sur le bouton "ajouter un aimant", "ajouter une spire" ou "ajouter un fil", cet élément se place au milieu de la zone de spectre (en vue de dessus). Suggestions On peut réaliser des configurations variées : un ou plusieurs aimants, une spire, deux spires parallèles ("bobines de Helmholtz" lorsque leur écartement est égal à leur rayon : elles permettent d'obtenir un champ relativement uniforme) ou antiparallèles ("quadrupôle"), un solénoïde, une bobine torique, deux fils parallèles parcourus par la même intensité ou des intensités différentes, etc... etc... Constater la réalité de l'expression "le champ tourbillonne autour de sa source".

La Cellule Animale Topographie du champ électrostatique (Animation Flash) Le champ électrostatique est une modification de l'espace, créée par la présence de charges électriques. L'animation permet de visualiser cette modification, en simulant l'apparition de petits détecteurs de champ électrostatique (dipôles par exemple). On observe ainsi le spectre du champ électrostatique. On peut aussi choisir d'observer la carte des équipotentielles. Manipulation En l'absence de charges, les dipôles s'orientent aléatoirement, montrant l'isotropie électrostatique. lorsqu'on clique sur le bouton "ajouter une charge", une charge q de valeur unité apparaît en haut à gauche. Lignes de champ : elles permettent de voir le "rayonnement" du champ électrostatique, qui diverge à partir de sa source. Equipotentielles : on remarque qu'elles sont perpendiculaires aux lignes de champ. Suggestions Observer les spectres : etc...etc... Voir aussi cette page pour le tracé des lignes de champ et des équipotentielles.

La liaison hydrogène observée au microscope à force atomique Des molécules de 8-hydroxyquinoléine. Sur les images de droite : C (carbone) = vert, H (hydrogène) = blanc, O (oxygène) = rouge, N (azote) = bleu, et les liaisons hydrogène sont représentées en pointillés. Ces molécules, sur une surface de cuivre, peuvent se retrouver liées par des liaisons hydrogène à basse température. C'est ce que l'on constate sur les deux images à gauche prises avec un microscope à force atomique. © Science, AAAS La liaison hydrogène observée au microscope à force atomique - 2 Photos C’est au début du XXe siècle que plusieurs chimistes ont plus ou moins indépendamment pris conscience qu’il existait une liaison chimique que l’on nomme la liaison hydrogène. Or, mieux comprendre la liaison hydrogène est au plus haut point intéressant parce que l’on peut la considérer comme la liaison chimique de la vie. Du microscope à effet tunnel au microscope à force atomique Une clé pour mieux comprendre la liaison hydrogène A voir aussi sur Internet Sur le même sujet

Topographie du champ électrostatique Le champ électrostatique est une modification de l'espace, créée par la présence de charges électriques. L'animation permet de visualiser cette modification, en simulant l'apparition de petits détecteurs de champ électrostatique (dipôles par exemple). On observe ainsi le spectre du champ électrostatique. On peut aussi choisir d'observer la carte des équipotentielles. Manipulation En l'absence de charges, les dipôles s'orientent aléatoirement, montrant l'isotropie électrostatique. lorsqu'on clique sur le bouton "ajouter une charge", une charge q de valeur unité apparaît en haut à gauche. Lignes de champ : elles permettent de voir le "rayonnement" du champ électrostatique, qui diverge à partir de sa source. Equipotentielles : on remarque qu'elles sont perpendiculaires aux lignes de champ. Suggestions Observer les spectres : etc...etc... Voir aussi cette page pour le tracé des lignes de champ et des équipotentielles.

Topographie du champ magnétostatique Le champ magnétostatique est une modification de l'espace, dûe à la présence d'aimants ou de courants électriques. L'animation permet de visualiser cette modification, en simulant l'apparition de petits détecteurs de champ magnétique (grains de limaille de fer). On observe ainsi le spectre du champ magnétostatique . Manipulation lorsqu'on clique sur le bouton "ajouter un aimant", "ajouter une spire" ou "ajouter un fil", cet élément se place au milieu de la zone de spectre (en vue de dessus). Suggestions On peut réaliser des configurations variées : un ou plusieurs aimants, une spire, deux spires parallèles ("bobines de Helmholtz" lorsque leur écartement est égal à leur rayon : elles permettent d'obtenir un champ relativement uniforme) ou antiparallèles ("quadrupôle"), un solénoïde, une bobine torique, deux fils parallèles parcourus par la même intensité ou des intensités différentes, etc... etc... Constater la réalité de l'expression "le champ tourbillonne autour de sa source".

Médiathèque - Spectres et composition chimique du Soleil Intégrer ce média sur votre site <div width='100%' height='100%'><center><object id="MultimediaPlayer_g_b4c78050_86a1_4df8_8b2b_bec35131098e" classid="clsid:D27CDB6E-AE6D-11cf-96B8-444553540000" width="700px" height="404px" class="flash"><param name="movie" value=" name="wmode" value="opaque"><!--[if !IE]>--><object type="application/x-shockwave-flash" data=" width="700px" height="404px"><param name="wmode" value="opaque"><!--<!

Related: