Conifer cone
The male cone (microstrobilus or pollen cone) is structurally similar across all conifers, differing only in small ways (mostly in scale arrangement) from species to species. Extending out from a central axis are microsporophylls (modified leaves). Under each microsporophyll is one or several microsporangia (pollen sacs). The female cone (megastrobilus, seed cone, or ovulate cone) contains ovules which, when fertilized by pollen, become seeds. The female cone structure varies more markedly between the different conifer families, and is often crucial for the identification of many species of conifers. Female cones of the conifer families[edit] Pinaceae cones[edit] Intact and disintegrated fir cones The members of the pine family (pines, spruces, firs, cedars, larches, etc.) have cones that are imbricate (that is, with scales overlapping each other like fish scales). Araucariaceae cones[edit] Podocarpaceae cones[edit] Berry-like Podocarpus cone Cupressaceae cones[edit] Sciadopityaceae cones[edit]
Melatonin
Melatonin The hormone can be used as a sleep aid and in the treatment of sleep disorders. It can be taken orally as capsules, tablets, or liquid. It is also available in a form to be used sublingually, and there are transdermal patches. There have been few clinical trials, particularly long-term ones, in the use of melatonin in humans. Discovery[edit] Biosynthesis[edit] Melatonin biosynthesis involves four enzymatic steps from the essential dietary amino acid tryptophan, which follows a serotonin pathway. In bacteria, protists, fungi, and plants melatonin is synthesized indirectly with tryptophan as an intermediate product of the shikimic acid pathway. Regulation[edit] In vertebrates, melatonin secretion is regulated by norepinephrine. It is principally blue light, around 460 to 480 nm, that suppresses melatonin,[24] proportional to the light intensity and length of exposure. Animals[edit] Plants[edit] Functions[edit] Circadian rhythm[edit] Antioxidant[edit] Immune system[edit] Medical uses[edit]
The pharmacology of psilocybin. [Addict Biol. 2002
Evolutionary Psychiatry: Carbs and Serotonin, A Connection After All?
A few weeks ago in Do Carbs Keep You Sane, I reported from a couple papers that disagreed with the textbook theory that a high carb, low protein and low fat diet would increase tryptophan in the brain. The Wurtmans from MIT have designed a whole pharmacologic diet around this theory, so it was interesting to read the rebuttal, especially since the rebuttal included data from Dr. Judith Wurtman's own papers. In short, the theory goes that carbohydrate ingestion stimulates insulin production, which in turn causes protein to be driven out of the bloodstream and into the cells. If we follow the lines of this theory, a high protein diet will increase the amount of other amino acids and increase the competition for the receptor, leaving tryptophan a loser and the brain relatively "low" in serotonin. Except in nutrition, nothing is ever simple. But Mr. High glycaemic index and glycaemic load meals increase the availability of tryptophan in healthy volunteers The results?
Pineal gland
The pineal gland, also known as the pineal body, conarium or epiphysis cerebri, is a small endocrine gland in the vertebrate brain. It produces melatonin, a serotonin derived hormone, which affects the modulation of sleep patterns in both seasonal and circadian rhythms.[1][2] Its shape resembles a tiny pine cone (hence its name), and it is located in the epithalamus, near the center of the brain, between the two hemispheres, tucked in a groove where the two halves of the thalamus join. Nearly all vertebrate species possess a pineal gland. The gland has been compared to the photoreceptive, so-called third parietal eye present in the epithalamus of some animal species, which is also called the pineal eye. Structure[edit] The pineal gland is reddish-gray and about the size of a grain of rice (5–8 mm) in humans, located just rostro-dorsal to the superior colliculus and behind and beneath the stria medullaris, between the laterally positioned thalamic bodies. Blood supply[edit] Histology[edit]
Tryptophan
Tryptophan (IUPAC-IUBMB abbreviation: Trp or W; IUPAC abbreviation: L-Trp or D-Trp; sold for medical use as Tryptan)[2] is one of the 22 standard amino acids and an essential amino acid in the human diet, as demonstrated by its growth effects on rats. It is encoded in the standard genetic code as the codon UGG. Only the L-stereoisomer of tryptophan is used in structural or enzyme proteins, but the R -stereoisomer is occasionally found in naturally produced peptides (for example, the marine venom peptide contryphan).[3] The distinguishing structural characteristic of tryptophan is that it contains an indole functional group. Isolation[edit] The isolation of tryptophan was first reported by Frederick Hopkins in 1901[4] through hydrolysis of casein. Biosynthesis and industrial production[edit] Plants and microorganisms commonly synthesize tryptophan from shikimic acid or anthranilate.[6] The latter condenses with phosphoribosylpyrophosphate (PRPP), generating pyrophosphate as a by-product.
Neuropharmacology - Differential interactions of indolealkylamines with 5-hydroxytryptamine receptor subtypes
1 Department of Neurology, Stanford University School of Medicine, Stanford, California 94305, U.S.A.2 Institute of Organic Chemistry, Syntex Research, 3401 Hillview Avenue, Palo Alto, California 94304, U.S.A. Accepted 9 August 1989, Available online 25 November 2002 Choose an option to locate/access this article: Check if you have access through your login credentials or your institution Check access Get rights and content Abstract Affinities of drugs for 21 indolealkylamine derivatives, some with putative hallucinogenic activity, were determined at 5-HT1A, 5-HT2A and 5-HT2B recognition sites, using radioligand competition studies. in the cortex of the rat. . Keywords indolealkylamines; radioligand binding; serotonin receptors; hallucinogens; psilocin; bufotenine
10 Superfoods Healthier Than Kale
In the world of marketing, image is everything. If you’re James Franco or Roger Federer or Taylor Swift, your name and face can be used to sell anything from phones to watches to perfume—even if you’re not necessarily famous for the your tech-savvy, your promptness, or the way you smell. In the food world, the biggest celebrity of all might be kale—the Shakira of salads, the Lady Gaga of leafy greens. It’s universally recognized that kale anything—kale chips, kale pesto, kale face cream—instantly imparts a health halo. Even 7-Eleven is making over its image by offering kale cold-pressed juices. Still, kale’s actually not the healthiest green on the block. SUPERFOOD #10 Collard Greens Nutrition Score: 62.49 A staple vegetable of Southern U.S. cuisine, collard greens also boast incredible cholesterol-lowering benefits — especially when steamed. SUPERFOOD #9 Romaine Lettuce Nutrition Score: 63.48 SUPERFOOD #8 Parsley Nutrition Score: 65.59 SUPERFOOD #7 Leaf Lettuce Nutrition Score: 70.73 Chard.