Fusor The Farnsworth–Hirsch Fusor, or simply fusor, is an apparatus designed by to create . It has also been developed in various incarnations by researchers including Elmore, Tuck, and Watson, and more lately by and . Unlike most controlled fusion systems, which slowly heat a magnetically confined plasma, the fusor injects "high temperature" s directly into a reaction chamber, thereby avoiding a considerable amount of complexity. The approach is known as . Hopes at the time were high that it could be quickly developed into a practical power source. History Invention The fusor was originally conceived by Philo Farnsworth, better known for his pioneering work in . What particularly interested Farnsworth about the device was its ability to focus electrons at a particular point. Design His original fusor designs were based on cylindrical arrangements of electrodes, like the original multipactors. Various models of the fusor were constructed in the early 1960s. Robert Hirsch Recent developments Other
Radioactive Boy Scout | Weapons & Security In 2006 Thiago Olson joined the extremely sparse ranks of amateurs worldwide who have achieved nuclear fusion with a home apparatus. In other words, he built the business end of a hydrogen bomb in his basement. The plasma "star in a jar"—shown at the left—demonstrated his success. For two years, Olson researched what he would need and scrounged for parts from eBay and the hardware store. “I have cross-country and track, so during those seasons I don’t have much time to work on it,” says Olson, a highschool senior in Michigan. Olson’s apparatus won’t work for generating commercial power because it takes more energy to run than it produces. Robert Bussard, a nuclear physicist who has spent most of his career investigating fusion for both the government and private companies, applauds Olson’s ambition.
Inertial electrostatic confinement A fusor, doing nuclear fusion in star mode Mechanism[edit] For every volt that an ion is accelerated across, it gains 11,604 degrees Kelvin. For example, a typical magnetic confinement fusion plasma is 15 keV, or 170 megakelvin. This is an illustration of the basic mechanism of fusion in fusors. (1) The fusor contains two concentric wire cages. History[edit] 1950s[edit] This picture shows the anode/cathode design for different IEC concepts and experiments. Three researchers at LANL including, Jim Tuck first explored the idea, theoretically, in a 1959 paper.[7] The idea had been purposed by a colleague.[8] The concept was to capture electrons inside a positive cage. Other concepts were being developed which would later merge into the IEC field. 1960s[edit] U.S. In his work with vacuum tubes, Philo Farnsworth observed that electric charge would accumulate in regions of the tube. 1980s[edit] In 1980 Robert W. 1990s[edit] 2000s[edit] In early 2000, Dr. 2010s[edit] Designs with cage[edit] Fusor[edit]
Fusor - Wikipedia, l'encyclopédie libre A homemade fusor.[1] A fusor is a device that uses an electric field to heat ions to conditions suitable for nuclear fusion. The machine has a voltage between two metal cages inside a vacuum. Positive ions fall down this voltage drop, building up speed. A Farnsworth–Hirsch fusor is the most common type of fusor.[2] This design came from work by Philo T. Fusors have been built by various institutions. Mechanism[edit] For every volt that an ion is accelerated across, it gains 11,604 kelvin. This is an illustration of the basic mechanism of fusion in fusors. (1) The fusor contains two concentric wire cages. History[edit] U.S. See also, history of IEC The fusor was originally conceived by Philo T. What particularly interested Farnsworth about the device was its ability to focus electrons at a particular point. Design[edit] Farnsworth's original fusor designs were based on cylindrical arrangements of electrodes, like the original multipactors. Work at Farnsworth Television labs[edit] where:
Tokamak Un article de Wikipédia, l'encyclopédie libre. Un tokamak est une chambre torique de confinement magnétique destinée à contrôler un plasma pour étudier la possibilité de la production d'énergie par fusion nucléaire. C'est une technologie de recherche expérimentale qui est, avec le confinement inertiel par laser, candidate pour permettre à long terme la production d'électricité en récupérant la chaleur qui serait produite par la réaction de fusion nucléaire. Inventé au début des années 1950 par les Russes Igor Tamm et Andreï Sakharov, le terme tokamak vient du russe « тороидальная камера с магнитными катушками » (toroïdalnaïa kamera s magnitnymi katushkami : en français, chambre toroïdale avec bobines magnétiques). Principe[modifier | modifier le code] Fusion nucléaire La fusion nucléaire permet à partir de deux atomes très légers (par exemple le deutérium et le tritium) de créer des atomes plus lourds. Conditions nécessaires[modifier | modifier le code] Avantages[modifier | modifier le code]
Polywell Un article de Wikipédia, l'encyclopédie libre. Le polywell est un procédé de confinement du plasma qui combine des éléments du confinement inertiel électrostatique et du confinement magnétique dans le but de produire de l'énergie par fusion nucléaire. Le nom polywell est un mot-valise regroupant polyhedron (polyèdre) et potential well (puits de potentiel). Le polywell est composé de bobinages d'électroaimant disposés selon une configuration polyédrique, au sein de laquelle les champs magnétiques assurent le confinement d'un nuage d'électrons. (en) Cet article est partiellement ou en totalité issu de l’article de Wikipédia en anglais intitulé « Polywell » (voir la liste des auteurs) Portail de la physique
Fusion nucléaire Un article de Wikipédia, l'encyclopédie libre. Le Soleil, siège de nombreuses réactions de fusion nucléaire. La fusion nucléaire, dite parfois fusion thermonucléaire, est un processus où deux noyaux atomiques légers s’assemblent pour former un noyau plus lourd. Cette réaction est à l’œuvre de manière naturelle dans le Soleil et la plupart des étoiles de l'univers. La fusion de noyaux légers dégage d’énormes quantités d’énergie provenant de l’attraction entre les nucléons due à l’interaction forte (voir énergie de liaison nucléaire). Elle est, avec la fission nucléaire, l’un des deux principaux types de réactions nucléaires appliquées. Un de ses intérêts est de pouvoir produire théoriquement beaucoup plus d’énergie (de 3 à 4 fois plus), à masse de « combustible » égale, que la fission. Il ne faut pas confondre la fusion nucléaire avec la fusion du cœur d’un réacteur nucléaire, qui est un accident nucléaire particulièrement redoutable[4]. Mécanisme de la fusion[modifier | modifier le code]
Confinement inertiel électrostatique Un article de Wikipédia, l'encyclopédie libre. Le confinement inertiel électrostatique (en anglais Inertial electrostatic confinement ou IEC), ou plus simplement confinement électrostatique, est un procédé permettant, grâce à un champ électrostatique, de maintenir un plasma dans un volume suffisamment restreint, et à une température suffisamment élevée, de telle sorte que des réactions de fusion nucléaire puissent s'y produire. Les diverses méthodes de confinement électrostatique[modifier | modifier le code] Le dispositif IEC le plus ancien et le plus connu est le Fuseur de Farnsworth-Hirsch[1]. Ce système comprend principalement deux grilles sphériques concentriques placées à l'intérieur d'une chambre à vide dans laquelle on injecte une petite quantité de « combustible de fusion ». La popularité du fuseur est largement due au fait que la construction de versions simplifiées est possible moyennant un investissement réduit, de l'ordre de 500 à 4 000 $ (en 2003). ↑ R. Portail de la physique
Building the Open Source Bussard Fusion Reactor by Famulus Two years ago, I watched the video "Should Google Go Nuclear," about the unveiling of the Bussard Fusion Reactor, and it felt like a technology with a remarkable potential to alleviate the world's energy crisis. I also thought, "I can build that thing!" Without university funding, I've been working at my lab in Brooklyn to build the world's first superconducting Bussard reactor, a nuclear fusion technology that promises clean, cheap, abundant energy. I track my progress on the Prometheus Fusion Perfection blog. To date I have fused the atom with a fusor (a step towards building a Bussard reactor). The next step is to replicate the results of the copper coil Polywell built by the university of Sydney. This project is open source and all code, documentation, and intellectual property produced is immediately shared with the community. The money from this fundraiser will go towards three months of research time and the hardware necessary to replicate the Sydney Experiment.
No Sleep ‘Til Fusion With every thing Mark Suppes fixes, another thing breaks. We’re in his workshop, and he’s hunched over, tightening the bolts on a squat tubular machine. This is the fusion reactor Suppes built, and it’s not working. Suppes never slows down, moving from one problem to the next with an irrepressible smile. The workshop is a few hundred square feet sub-let from a roboticist friend in a warehouse one floor above a hassidic clothing factory near Bed-Stuy in Brooklyn. Dr Robert W. But in the few weeks before his last lab shuttered from lack of funding, he’d had a breakthrough, and Bussard believed that he might have solved the most difficult physics problems of fusion energy. Fusion reactors work by creating very high energy plasma inside of a vacuum, and then getting small atoms close enough for the attractive force of their nuclei to overcome the repelling force of the atoms’ natural electrostatic repulsion, causing the two atoms to fuse into a new element. “It’s the McDonalds problem.
Ion An ion (/ˈaɪən, -ɒn/)[1] is an atom or molecule in which the total number of electrons is not equal to the total number of protons, giving the atom a net positive or negative electrical charge. Ions can be created by both chemical and physical means. In chemical terms, if a neutral atom loses one or more electrons, it has a net positive charge and is known as a cation. In the case of physical ionization of a medium, such as a gas, what are known as "ion pairs" are created by ion impact, and each pair consists of a free electron and a positive ion.[2] History of discovery[edit] The word ion is the Greek ἰόν, ion, "going", the present participle of ἰέναι, ienai, "to go". Faraday also introduced the words anion for a negatively charged ion, and cation for a positively charged one. Characteristics[edit] All ions are charged, which means that like all charged objects they are: Anions and cations[edit] Hydrogenatom (center) contains a single proton and a single electron. Natural occurrences[edit]
panorama des projets civils de fusion nucléaire - Veille économique: énergie sans CO2 + réseaux Petit panorama 2007 de la fusion nucléaire De tous les domaines de recherche sur l’énergie, la fusion nucléaire est sans doute le plus délicat. On cherche à y maîtriser le feu ultime, après l’avoir laissé s’échapper dans les bombes H. Depuis cette époque, la fusion est présentée comme l’espoir d’obtenir une énergie propre et illimitée, mais, comme le chante Brassens, "l’âge d’or sans cesse est remis aux calendes". Historiquement, après un départ dans un désordre et une diversité favorables à la recherche, l’essentiel des scientifiques, au niveau mondial, s’est réuni pour imiter les Russes qui, à la fin des années 60, réussissaient une expérience de fusion dans un tokamak, sorte de grand aimant en forme d’anneau (chambre toroïdale à confinement magnétique - type ITER). Peu de choses ont changé depuis, sinon qu’on trouve aujourd’hui des tokamaks jusqu’en Chine et en Iran. Les États-Unis ne participent qu’à hauteur de 10 % dans ITER. Autre amateur de plasmoïde, Eric J.