http://en.wikipedia.org/wiki/Theory_of_everything
Related: the theory of everythingTimeline of the universe Using observatories on the earth and in space, astronomers have been able to study the nature of the cosmos in unprecedented detail. By analysing the motion of distant galaxies, they have discovered that the whole cosmos is expanding under the influence of forces unleashed at its birth in the big bang. Combined with studies of the radiation left over from that primordial explosion, they have found that the universe was born 13.7bn years ago, give or take 200m years. Pinning down the date of creation with such precision is impressive, but scientists have gone much further.
General relativity General relativity, or the general theory of relativity, is the geometric theory of gravitation published by Albert Einstein in 1916[1] and the current description of gravitation in modern physics. General relativity generalizes special relativity and Newton's law of universal gravitation, providing a unified description of gravity as a geometric property of space and time, or spacetime. In particular, the curvature of spacetime is directly related to the energy and momentum of whatever matter and radiation are present. The relation is specified by the Einstein field equations, a system of partial differential equations. Some predictions of general relativity differ significantly from those of classical physics, especially concerning the passage of time, the geometry of space, the motion of bodies in free fall, and the propagation of light.
Beyond the black hole singularity Our first glimpses into the physics that exist near the center of a black hole are being made possible using "loop quantum gravity"—a theory that uses quantum mechanics to extend gravitational physics beyond Einstein's theory of general relativity. Loop quantum gravity, originated at Penn State and subsequently developed by a large number of scientists worldwide, is opening up a new paradigm in modern physics. The theory has emerged as a leading candidate to analyze extreme cosmological and astrophysical phenomena in parts of the universe, like black holes, where the equations of general relativity cease to be useful. Previous work in loop quantum gravity that was highly influential in the field analyzed the quantum nature of the Big Bang, and now two new papers by Abhay Ashtekar and Javier Olmedo at Penn State and Parampreet Singh at Louisiana State University extend those results to black hole interiors. Carlo Rovelli.
How Does Theta Work The scientific basis of ThetaHealing® consists of two main categories, quantum and epigenetic: Quantum StuffWe are quantum beings. This simple fact is the beginning of understanding how and why ThetaHealing® works. We are not merely physical beings, made of matter. Quantum mechanics Wavefunctions of the electron in a hydrogen atom at different energy levels. Quantum mechanics cannot predict the exact location of a particle in space, only the probability of finding it at different locations.[1] The brighter areas represent a higher probability of finding the electron. Quantum mechanics (QM; also known as quantum physics, quantum theory, the wave mechanical model, or matrix mechanics), including quantum field theory, is a fundamental theory in physics which describes nature at the smallest scales of atoms and subatomic particles.[2] Quantum mechanics gradually arose from theories to explain observations which could not be reconciled with classical physics, such as Max Planck's solution in 1900 to the black-body radiation problem, and from the correspondence between energy and frequency in Albert Einstein's 1905 paper which explained the photoelectric effect. History[edit] In 1838, Michael Faraday discovered cathode rays.
Singularities and Black Holes 1. Spacetime Singularities General relativity, Einstein's theory of space, time, and gravity, allows for the existence of singularities. Everyone agrees on this. Top 10 Unsolved Mysteries of Science Despite what cable news may tell you, scientists don’t really squabble over if evolution is real (it is) or if the climate is changing faster than can be explained by naturally-occurring phenomena (it is) or if vaccines are regarded as safe and recommended for most children (they are). Sure, there may be fine points within those categories that are debatable, but not to the extent that is commonly described by talking heads on TV. However, that’s not to say that scientists perfectly understand everything about the ways of the Universe. Physicist Brian Cox once said: “I'm comfortable with the unknown—that’s the point of science. There are places out there, billions of places out there, that we know nothing about.
Particle physics Subatomic particles[edit] Modern particle physics research is focused on subatomic particles, including atomic constituents such as electrons, protons, and neutrons (protons and neutrons are composite particles called baryons, made of quarks), produced by radioactive and scattering processes, such as photons, neutrinos, and muons, as well as a wide range of exotic particles. Dynamics of particles is also governed by quantum mechanics; they exhibit wave–particle duality, displaying particle-like behavior under certain experimental conditions and wave-like behavior in others. In more technical terms, they are described by quantum state vectors in a Hilbert space, which is also treated in quantum field theory. Following the convention of particle physicists, the term elementary particles is applied to those particles that are, according to current understanding, presumed to be indivisible and not composed of other particles.[1] History[edit]
Black Holes Must Have Singularities, Says Einstein's Relativity Inside a black hole, the spacetime curvature is so large that light cannot escape, nor can particles, under any circumstances. A singularity, based on our current laws of physics, must be an inevitability. Pixabay user JohnsonMartin The more mass you place into a small volume of space, the stronger the gravitational pull gets. According to Einstein's general theory of relativity, there's an astrophysical limit to how dense something can get and still remain a macroscopic, three-dimensional object. Exceed that critical value, and you're destined to become a black hole: a region of space where gravitation is so strong that you create an event horizon, and a region from within which nothing can escape.