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Abstract
Scenario planning has emerged as a widely used planning process for resource manage-
ment in situations of consequential, irreducible uncertainty. Because it explicitly incor-
porates uncertainty, scenario planning is regularly employed in climate change
adaptation. An early and essential step in developing scenarios is identifying “climate
futures”—descriptions of the physical attributes of plausible future climates that could
occur at a specific place and time. Divergent climate futures that describe the broadest
possible range of plausible conditions support information needs of decision makers,
including understanding the spectrum of potential resource responses to climate change,
developing strategies robust to that range, avoiding highly consequential surprises, and
averting maladaptation. Here, we discuss three approaches for generating climate futures:
a Representative Concentration Pathway (RCP)-ensemble, a quadrant-average, and an
individual-projection approach. All are designed to capture relevant uncertainty, but they
differ in utility for different applications, complexity, and effort required to implement.
Using an application from Big Bend National Park as an example of numerous similar
efforts to develop climate futures for National Park Service applications over the past
decade, we compare these approaches, focusing on their ability to capture among-
projection divergence during early-, mid-, and late-twenty-first century periods to align
with near-, mid-, and long-term planning efforts. The quadrant-average approach and
especially the individual-projection approach captured a broader range of plausible future
conditions than the RCP-ensemble approach, particularly in the near term. Therefore, the
individual-projection approach supports decision makers seeking to understand the
broadest potential characterization of future conditions. We discuss tradeoffs associated
with different climate future approaches and highlight suitable applications.
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1 Introduction

Resource management planning in the face of rapid anthropogenic climate change is funda-
mentally challenging due to irreducible uncertainties in climate projections and responses by
ecological and social systems. In this planning environment, a decision maker’s goal is often to
minimize failure, rather than maximize success. This goal applies especially to avoiding costly
and often catastrophic “surprises” (negative outcomes that were not considered; Terando et al.
2020) driven by climate change and complex interactions between nature and humans (Kopp
et al. 2017). In these circumstances, scenario planning has emerged as a widely used planning
process that acknowledges and incorporates this uncertainty and provides a way to identify and
avoid potential surprises (Brekke et al. 2009a; Gross et al. 2016; Lempert et al. 2003; Peterson
et al. 2003; Star et al. 2016). Scenario planning originated in the military and business sectors
but has been increasingly applied in the field of conservation planning and climate change
adaptation. For planning purposes, scenarios should be plausible (i.e., science-based) and
challenging pictures of the future that encapsulate key uncertainties and system responses
(Rowland et al. 2014). A key benefit of explicitly engaging this uncertainty is that it helps
decision makers identify strategies robust to a wide range of potential futures, including those
with low-probability, high-consequence events (Brekke et al. 2009a). Furthermore, by con-
sidering a range of plausible futures and time frames, managers can evaluate near- and long-
term consequences of actions and identify contingencies that may provide or deny future
opportunities. A full consideration of multiple futures also diminishes the role of climate
“prediction,” reducing the need for, and focus on, deterministic or over-optimized adaptation
strategies that only work if the prediction is correct (Carbone 2014; Dessai et al. 2009).

In the context of planning for climate change, an early and essential step in developing
plausible scenarios is to identify the “climate futures” (CFs, hereafter)—divergent descriptions
of the physical attributes of climate that could plausibly occur at a specific place and time in
the future. CFs characterize uncertainty and are foundational to scenarios of climate change
implications (Fig. 1a). Divergent CFs that describe the broadest possible range of plausible
conditions support information needs of decision makers, including understanding the spec-
trum of potential resource responses to climate change, developing strategies robust to that
range, avoiding highly consequential surprises, and averting maladaptation. Plausible future
climates are derived from global climate models (GCMs), typically driven by different
greenhouse gas (GHG) emission pathways. Pathways of GHG emissions have been standard-
ized as a set of Representative Concentration Pathways (RCPs; Moss et al. 2010) that reflect
the climate consequences of a broad range of socio-economic futures and have been accepted
by the international community. A large set of GCMs, reflecting different quantitative
representations of atmospheric dynamics and different sets of Earth system processes, have
used these standardized RCPs to generate climate projections through the twenty-first century.
By representing a range of climate forcings (i.e., RCP 2.6, RCP 4.5, RCP 6.0, RCP 8.5),
effectively from low to high, these RCPs provide a convenient means for building scenarios.
For example, a “least-change” scenario would average the results from GCMs driven by RCP
2.6, which reflects the least change in GHG concentrations from current levels, to explore the
potential effects of climate change on resources of concern. By contrast, a “most change”
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scenario would average projections from RCP 8.5, which reflects the greatest increase in GHG
emissions.

Although many climate assessments have relied on RCP-based scenarios (Jantz et al. 2016;
Monahan et al. 2013; Ryan et al. 2020; van Hooidonk et al. 2015; Whitlock et al. 2017)—
including those conducted to support US National Park Service (NPS) resource

Fig. 1 a Role of CFs in supporting scenario-based climate adaptation. The scenario planning process (only a
portion of which is shown here) includes the development of CFs, addition of resource implications (i.e.,
vulnerabilities) to create climate-resource scenarios, and, ultimately, application in decision making. b Example
CFs from the Big Bend National Park water development decision process for the Chisos Basin illustrates the
steps in the process. Figure modified from Runyon et al. (2020)
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management—this approach has a number of shortcomings, particularly for near-term plan-
ning. A key issue of developing scenarios around RCPs is they fail to fully characterize
uncertainty for the next 30 years in the future because atmospheric CO2 concentrations are
similar for all RCPs until about 2050 (Kirtman et al. 2013). The considerable variation in near-
to mid-term climate projections is primarily due to natural climatic variation and differences in
the response of GCMs to the same radiative forcings and not GHG concentrations (Hawkins
and Sutton 2009). Local, state, tribal, and federal organizations commonly focus on near-term
planning, and thus, a mismatch exists between the need to understand the full range of
plausible climatic conditions within the planning horizon and the capacity of RCP-centered
approaches to capture that range. To support near-term decisions by NPS managers, we needed
an efficient, consistent, and effective means to identify CFs for routine park planning. RCP-
based CFs did not meet our needs for CFs that were plausible, relevant, and that adequately
captured the range of potential climatic conditions under both near- and longer-term horizons.

Here, we examine three approaches to generate divergent CFs to support decision makers’
needs. All three processes are designed to capture the relevant uncertainty for a given
management application, but they vary in detail, complexity, and effort and are scaled to meet
a range of information needs. Using an application from Big Bend National Park (BBNP,
hereafter) as an example of numerous similar efforts to develop CFs for NPS applications over
the past decade (see NPS 2021), we describe how different degrees of among-projection
divergence are captured with each approach. To do so, we compared the range of uncertainty
captured by the different CF approaches during early (2040s), mid- (2060s), and late twenty-
first century (2080s) periods to align with near-, mid-, and long-term planning efforts. We also
describe key considerations when developing CFs, including tradeoffs inherent in each
approach.

2 Case study application of climate futures—Big Bend National Park

CFs generated for BBNP were used to evaluate future projections of groundwater discharge
from Oak Spring, a key groundwater-fed spring that serves as the sole water source for the
Chisos Basin (latitude 29.278, longitude − 103.337), one of the busiest areas of the park
(Lawrence and Runyon 2019). Contemporary precipitation is a key driver of Oak Spring
recharge, so changes in precipitation are anticipated to have direct and immediate implications
for this water source (Lawrence and Runyon 2019). At the same time, the infrastructure that
supports water acquisition and delivery from Oak Spring is about 70 years old and needs
replacement. Therefore, park managers were interested in evaluating future projections of the
recharge and discharge for Oak Spring to determine risks and benefits associated with three
potential actions: (1) re-developing the Oak Spring water supply system as is, (2) re-
developing the Oak Spring system but reconfiguring it to withstand longer and more severe
dry periods, or (3) switching to another water source with older, deeper groundwater, i.e., a
water supply presumed to be less sensitive to contemporary climate conditions. The design life
of the re-development project was 50–70 years and the range in cost associated with these
different options was substantial ($8 M to > $10M; source-switching [option 3] being the most
expensive). Given the desired longevity of this large investment, a major consideration in
choosing among the different actions was future climate conditions, making the value of CFs
significant to this decision. CFs were generated from projections of precipitation and air
temperature (which can influence available water due to evapotranspiration processes, details
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below). Resource managers were ultimately interested in evaluating how often Oak Spring
discharge may fall below 20 gal per minute (gpm) in the future (compared to the past). This
threshold challenges water operations for the park and may invoke a drought water conserva-
tion plan. Alternative approaches (e.g., decision scaling (Brown et al. 2012), stress testing
(Albano et al. 2021)) could also be used to get at this question, especially when clear
performance thresholds or risks can be related directly to climate. However, scenario planning
often addresses a diversity of resources, and for many of the resources the NPS manages,
defining thresholds or discrete events would be difficult. Therefore, a scenario planning
approach that does not necessarily rely on them is useful.

3 Generating climate futures

CFs for BBNP were derived from daily projections of precipitation and temperature for a 16-
km2 grid cell overlaying the primary recharge area for Oak Spring. From this grid cell, twenty
GCMs from the Coupled Model Intercomparison Project Phase 5 archive were used (CMIP5;
Taylor et al. 2012), statistically downscaled using the Multivariate Adaptive Constructed
Analog method (MACAv2-METDATA; Abatzoglou and Brown 2012). We used results for
GCMs driven by RCP 4.5 and RCP 8.5. CFs were generated using the 30-year climate normal
convention (e.g., a ca. 2040 CF represents data summarized over the period 2025–2055).
These CFs were compared to the historical period 1950–1999. We chose this period because
key statistical properties of the MACAv2-METDATA precipitation data matched the observed
record only over a longer, 50-year period. Given the multitude of GCM projections (twenty
GCMs driven by two RCPs would represent 40 different plausible CFs; Fig. 2a), here we
review three approaches to capture the range of projections with a more tractable set of
representative CFs. These approaches include RCP-based ensembles, quadrant-average, and
individual GCM projections (hereafter referred to as the RCP, quadrant, and individual-
projection approaches, respectively). The term “projection” refers to a climate model (e.g.,
IPSL-CM5A-MR) driven by a specific radiative forcing (e.g., RCP 4.5).

CFs that use the RCP approach are typically developed by averaging climate metrics from
all or a subset of GCMs for selected RCPs–often a high emissions scenario and a mid-range
mitigation scenario (RCP 8.5 and RCP 4.5; USGCRP 2018). In this approach, divergence
among the CFs primarily represents uncertainty regarding societal GHG emissions (Fig. 2b).
The quadrant and individual-projection approaches begin by plotting deviations of projected
climate metrics from a historical-period average, with each point representing a projection
from a GCM-RCP combination (Fig. 2c, d). Results from GCMs driven by different RCPs are
plotted together, to fully represent both model and emissions uncertainty (Fig. 2a). The axes
may be simple metrics, such as change in average annual temperature and precipitation, or
more complex derived indices associated with specific resource sensitivities (see Section 5.3
for more detail).

In the quadrant approach, the scatterplot is divided into quadrants using the mean
value of each axis. These quadrants are further refined by defining and excising the
central tendency, defined here as the 25th–75th percentile of change for each axis
(box in center of Fig. 2c). The average values of all or a subset of projections in each
sub-quadrant are used to represent a CF (Fig. 2c). For example, the upper left sub-
quadrant of Fig. 2c characterizes a “Warm Wet” future with increasing temperature
and precipitation compared to the historical period. The lower right sub-quadrant is
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Fig. 2 Change in average annual mean temperature and average annual total precipitation ca. 2040 (2025–2055)
relative to the 1950–1999 historical period for the Chisos Basin, Big Bend National Park for a each GCM-RCP
projection, with corresponding model names in Table S1, b RCP ensemble-based CFs based on RCP 4.5 (blue)
and RCP 8.5 (yellow) projections (asterisks represent the ensemble [i.e., the average of projections] for RCP 4.5
and RCP 8.5 CFs), c quadrant-based CFs (blue and red points represent “WarmWet” and “Hot Dry” projections,
respectively; asterisks represent “WarmWet” and “Hot Dry” CF ensemble means, determined by averaging blue
and red projections within the sub-quadrant), and d Individual-projection-based CFs (CNRM-CM5 RCP 4.5 and
IPSL-CM5A-MR RCP 8.5). For c, dashed lines indicate the mean value of all projections for each axis and the
box indicates the central tendency encompassing the 25th and 75th percentiles for each axis. Projections can be
characterized as “Warm Wet,” “Hot Wet,” “Hot Dry,” and “Warm Dry” CFs according to sub-quadrant (upper
left, upper right, bottom right, and bottom left sub-quadrants, respectively); in c, we highlight one example CF
contrast (“WarmWet” versus “Hot Dry”), but other CF contrasts could be used. Gray points in c and d represent
unused projections in the development of those climate futures
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most divergent from this “Warm Wet” future and, because projections in this sub-
quadrant have larger increases in temperature and a reduction in precipitation com-
pared to the historical period, these projections characterize a “Hot Dry” CF. The
upper right (“Hot Wet”) and lower left (“Warm Dry”) sub-quadrants represent other
potential divergent CFs. The quadrant approach was adapted from the Volpe Center
climate futures exploration and synthesis approach (Rasmussen et al. 2015).

The individual-projection approach selects projections to capture maximal diver-
gence in the metrics selected for the scatterplot axes. Quadrants and sub-quadrants can
be used as a guide for selecting individual projections for this approach, but quadrants
are not always useful, such as when projections are unevenly distributed across
quadrants and instead form a linear or triangular “cloud” of points. In the BBNP
application, individual projections were used to characterize a divergent “Warm Wet”
and “Hot Dry” CF pair (Fig. 2d). When more than two climate metrics are used to
define CFs, projections that provide the greatest divergence across those multivariate
projections are chosen (e.g., Schuurman et al. 2019; Section 5.3). Where possible,
individual projections should be vetted for a geography before they are relied upon to
represent a plausible CF, at least to the extent that GCMs known to underperform in a
particular region are avoided (Karmalkar et al. 2019; Littell et al. 2011). Some tools
and evaluations can help assess model performance for a given geography (Bock et al.
2018; Rupp et al. 2013; Sheffield et al. 2013a; Sheffield et al. 2013b).

The quadrant and individual-projection approaches capture uncertainty stemming from
GCMs and RCPs without differentiating between the two sources, which is useful for the
scenario planning context focused on capturing the broadest range of plausible conditions.
Treating this uncertainty together has precedent in the literature (Battaglin et al. 2020; BOR
2014; Hay and McCabe 2019; Maloney et al. 2020).

4 Comparing methodologies for capturing the range of uncertainty
over three time periods

To illustrate differences in the range of uncertainty captured using RCP, quadrant, and
individual-projection CF approaches, we evaluated the divergence of each approach for near-,
mid-, and long-term planning purposes at BBNP.

Figure 3 illustrates future changes in temperature and precipitation for BBNP’s Chisos
Basin, using forty GCM-RCP projections (20 GCMs driven by RCPs 4.5 and 8.5) for three
periods centered on 2040, 2060, and 2080. All projections indicate the future will be warmer
than the past. In the nearest time frame (2040), there is almost complete overlap in temperature
from GCMs driven by RCP 4.5 and RCP 8.5 (Fig. 3a), with the overlap diminishing through
time (Fig. 3b, c). Precipitation projections for the Chisos Basin are uncertain—specifically,
some indicate precipitation increases whereas others indicate decreases—in all time periods.
Unlike temperature projections that sort according to RCP in the 2060s and 2080s (RCP 8.5
warmer than RCP 4.5), there is no indication of systematic increases or decreases in annual
precipitation associated with a given RCP throughout the projection period (2025–2095).
Therefore, for precipitation, the GCMs themselves, rather than the RCPs, drive among-
projection divergence (Fig. 3). In other areas, such as the Arctic and high latitudes, both
temperature and precipitation trends are consistently and strongly associated with GHG
emissions (IPCC 2013).
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For the quadrant and individual-projection approach, we focused on a “Hot Dry” and “Warm
Wet” CF pair to investigate decision-relevant uncertainty in how Oak Spring may respond to
climate change. These CFs were intended to characterize divergent worst-case (“Hot Dry”) and
best-case (“WarmWet”) futures. For the quadrant approach, the “Hot Dry” and “WarmWet”CFs
intermingle GCMs driven by RCP 4.5 and 8.5 for the 2040 and 2060 periods, whereas the RCPs
are largely segregated on the temperature (but not precipitation) axis by the 2080 period (Fig. 3).
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Fig. 3 Change in average annual mean temperature and average annual total precipitation ca. a 2040 (2025–
2055), b 2060 (2045–2075), and c 2080 (2065–2095), relative to the 1950–1999 historical period for each GCM-
RCP projection in the Chisos Basin, Big Bend National Park. Models driven by RCP 4.5 and 8.5 are represented
by blue and yellow points, respectively. Dashed lines indicate the mean value of all projections for each axis and
the box indicates the central tendency encompassing the 25th and 75th percentiles for each axis. The circled
models include CNRM-CM5 RCP 4.5 (blue, 2040), GFDL-ESM2M RCP 4.5 (blue, 2060), INM-CM4 RCP 4.5
(blue, 2080), IPSL-CM5A-MR RCP 8.5 (yellow, all periods)
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For each period (2040, 2060, and 2080), we identified two individual projections that are
strongly divergent between the “Hot Dry” and “WarmWet” CFs (circled projections in Fig. 3).
One model (IPSL-CM5A-MR RCP 8.5) consistently represented a divergent “Hot Dry” CF
(i.e., it occupied the farthest lower right portion of the “Hot Dry” sub-quadrant). For the
“Warm Wet” CF, a different model was chosen to demonstrate maximal divergence in each
period because of differences among projection dynamics through time (e.g., the “WarmWet”
projection chosen for 2080 is a “Warm Dry” projection in 2040). We present different
projections across the three time periods to illustrate the broader range of uncertainty captured
by the quadrant or individual-projection approaches over RCP-ensembles in discrete time
periods (2040, 2060, 2080; Table 1, Fig. 3). However, in real-world applications, where we
model resource response through time, we always maintain consistent projections. For exam-
ple, to support the BBNP water development decision (Lawrence and Runyon 2019), our
analysis consistently used INM-CM4 RCP 4.5 (“Warm Wet”) and IPSL-CM5A-MR RCP 8.5
(“Hot Dry”) because these were the most divergent projections during the late-century period
(see circled projections in Fig. 3c). That period corresponded to the design life of the water re-
development project (50–70 years, or 2070–2090).

Table. 1 Example climate futures for Big Bend National Park and evaluation of the range of uncertainty captured
using RCP, quadrant, and individual-projection climate future approaches. a average annual mean temperature
and b average annual total precipitation for three time periods (ca. 2040, 2060, 2080) for RCP 8.5 and RCP 4.5
ensemble models, quadrant average–based CFs (“Hot Dry,” “Warm Wet”), and individual GCM-RCP projec-
tions. For individual “Hot Dry” projections IPSL-CM5A-MR RCP 8.5 was used to represent the hottest, driest
projection for all periods because it was consistently the driest projection across all periods. For individual
“Warm Wet” projections the following models were used to represent a characteristically warm, wet projection
for each time period: 2040, CNRM-CM5 RCP 4.5; 2060, GFDL-ESM2M RCP 4.5; 2080, INM-CM4 RCP 4.5.
Time periods represent 30-year averages; 2025–2055 (2040), 2045–2075 (2060), and 2065–2095 (2080). The
ranges refer to the divergence between the different CFs (e.g., RCP 8.5 vs 4.5) for temperature and precipitation
based on the climate future approach. The percentage represents the range of uncertainty of the RCP or quadrant-
approach relative to the individual-projection approach

(a) Temperature (°C) 2040 2060 2080
RCP 8.5 20.1 21.2 22.8
RCP 4.5 19.9 20.5 20.9

RCP approach range 0.2 (14.3%) 0.7 (26.9%) 1.9 (35.2%)
Hot Dry 20.5 21.3 23.6
Warm Wet 19.6 20.1 20.6

Quadrant approach range 0.9 (64.3%) 1.2 (46.2%) 3 (55.6%)
Hot Dry—IPSL-CM5A-MR RCP 8.5 20.8 22.2 24.9
Warm Wet—CNRM-CM5 RCP 4.5 19.4
Warm Wet—GFDL-ESM2M RCP 4.5 19.6
Warm Wet—INM-CM4 RCP 4.5 19.5

Individual-projection approach range 1.4 2.6 5.4
(b) Precipitation (mm)
RCP 8.5 369.6 376.0 361.1
RCP 4.5 369.1 371.5 380.1

RCP approach range 0.5 (0.4%) 4.5 (2.8%) 19.0 (7.4%)
Hot Dry 334.3 320.4 292.6
Warm Wet 416.9 414.9 421.0

Quadrant approach range 82.6 (67.9%) 94.5 (58.5%) 128.4 (50.0%)
Hot Dry—IPSL-CM5A-MR RCP 8.5 294.2 287.3 231.0
Warm Wet—CNRM-CM5 RCP 4.5 415.9
Warm Wet—GFDL-ESM2M RCP 4.5 448.9
Warm Wet—INM-CM4 RCP 4.5 487.7

Individual-projection approach range 121.7 161.5 256.7
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Differences in temperature and precipitation projections showed that the quadrant and
individual-projection approaches captured a much greater proportion of the range of variation
among projections than did RCP ensembles (Table 1). For example, the difference in annual
average temperature between the individual-projection approach “Hot Dry” and “Warm Wet”
CFs is 1.4 °C (2040), 2.6 °C (2060), and 5.4 °C (2080; Table 1). The difference for the same
metric between an ensemble of models driven by RCP 8.5 and the same ensemble driven by
RCP 4.5 is only 0.2 °C (2040), 0.7 °C (2060), and 1.9 °C (2080), representing 14.3%, 26.9%,
and 35.2% of the range characterized by the individual-projection approach for each time
period, respectively. Relative to the RCP approach, the quadrant approach captured a greater
portion of the range represented by the individual-projection approach (2040–64.3%; 2060–
46.2%; 2080–55.6%). A similar, although exaggerated, phenomenon was observed for pre-
cipitation (Table 1). The divergence represented by quadrant-based CFs (“Hot Dry” vs “Warm
Wet”) was less than that represented using individual projections but greater than that
produced using RCP ensembles (RCP 8.5 vs 4.5; Table 1). In the case of precipitation,
RCP-based CFs capture a much smaller portion of the uncertainty relative to the other CF
approaches (e.g., the RCP approach represents 0.4%, 2.8%, and 7.4% of the range character-
ized by the individual-projection approach for each time period, respectively). Overall, the
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Fig. 4 Projected annual mean temperature from 2020 to 2100 for a RCP 4.5 and RCP 8.5 ensembles and b
GCM-RCP projections INM-CM4 RCP 4.5 and IPSL-CM5A-MR RCP 8.5. Projected annual total precipitation
from 2020 to 2100 for c RCP 4.5 and RCP 8.5 ensembles and d GCM-RCP projections INM-CM4 RCP 4.5 and
IPSL-CM5A-MR RCP 8.5
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quadrant and especially the individual-projection approach support decision makers seeking to
understand the broadest potential characterization of future conditions. The individual-
projection approach seeks to provide an expansive characterization of the ways climate could
plausibly change (i.e., using divergence to capture the greatest range in uncertainty), but as
Mote et al. (2011) point out, even the large number of available projections does not represent
the true physical uncertainty that many studies implicitly assume it does.

Differences in divergence between the RCP 8.5 and RCP 4.5 ensembles compared to
“Warm Wet” and “Hot Dry” individual projections can be visualized using time series plots
(Fig. 4). For consistency, we portray this comparison with the projections chosen for the 2080
period (IPSL-CM5A-MR RCP 8.5, INM-CM4 RCP4.5). Projections of temperature for the
RCP 8.5 and RCP 4.5 ensemble increasingly diverge through time (Fig. 4a). This trend was
not observed for precipitation (Fig. 4c), likely because averaging wetter and drier models in an
ensemble results in less divergent precipitation projections. Individual projections chosen to
represent “Hot Dry” and “Warm Wet” CFs increasingly diverge through time both in annual
temperature and precipitation (Fig. 4b, d) but are also notably more divergent than RCP 4.5
and 8.5 ensembles in the near and long term.

Averaging within RCP ensembles mutes the temporal dynamics of climate metrics relative
to individual projections (compare the interannual variability of Fig. 4a to 4b, and 4c to 4d).
For resource managers, this variability, and associated change in frequency of extreme events,
is often critical information for making long-term decisions that reduce the likelihood of future
failure. In the BBNP case study, capturing this variability was essential given the key
management metric we were evaluating: how often the groundwater-fed spring fell beneath
a threshold flow. Snover et al. (2013) advise that when assessing effects sensitive to interan-
nual variability, it is best to select a specific individual projection rather than using a
multimodel average (or choose a method that preserves this variability).

CFs developed using the quadrant approach are not included in Fig. 4 because for some
geographies (including BBNP) projections change sub-quadrants through time. Given these
dynamics, we avoid, for example, plotting a “Warm Wet” quadrant–based CF annually,
because the projections that make up that CF may be different from year to year (and therefore
do not maintain internally consistent or coherent projection dynamics). This complexity is a
limitation of this approach for investigating change through time, and because of this issue we
generally only use quadrant-based CFs when planning for a single, discrete, time period (e.g.,
2080).

5 Considerations for climate future generation

Many options exist for generating CFs, whether to support strategic planning or managing a
specific resource. Below we discuss some of these considerations.

5.1 Time period for climate futures and the number of climate periods

The appropriate time period for CFs depends on the resource of interest, management question,
and planning horizon. NPS planning horizons vary and are typically shorter for routine
management (up to 30 years in the future; e.g., restoration, wildlife management), and 50–
80 years for infrastructure (buildings, roads, etc.) or major wildlife investments (e.g., managed
relocation, Karasov-Olson et al. 2021).
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Some management questions may require simultaneous evaluation of near- and long-term
projections. For example, natural resource managers charged with native trout restoration in
Yellowstone National Park may wish to evaluate stream temperature-relevant CFs in the near
and long term to evaluate feasibility in both time frames. Evaluating strategies against near and
long time frames can also help avoid maladaptation, where a decision to meet short-term goals
precludes actions that are better in the long term (Noble et al. 2014). Our practice, when
spanning multiple climate periods with individual projections, is to conduct the analysis using
a consistent set of projections.

5.2 Spatial resolution and extent for climate futures

To create CFs, we currently use results from GCMs in the CMIP5 archive, statistically
downscaled to 16 km2 using the MACA method (Abatzoglou and Brown 2012). Other
downscaling options are available (Harris et al. 2014; Jiang et al. 2018) and the choice of
downscaling method depends on the performance of different methods for representing the
climate metrics of interest and the needed resolution. If warranted by the decision context, the
spatial resolution (i.e., spatial grain) of a given set of CFs can be updated as finer-resolution
downscaled models become available.

The spatial extent of data used to create CFs depends on the decisions of interest, input data,
and available computing power. For parks with homogenous topography, we typically use a
single grid cell from downscaled climate models to develop CFs for a given location. Multiple
grid cells within a homogenous area can also be averaged to create CFs for a given spatial
extent (e.g., an NPS park boundary). For spatial extents with heterogeneous topography and
climates, we create multiple sets of CFs based on multiple grid cells spanning high- and low-
elevation bands or locations that bracket other important climate gradients, such as wet/dry.
Topography strongly affects local climate (Daly et al. 2008), and explicit consideration of
topography is needed when selecting specific cells from gridded climate data in topographi-
cally rich terrain (Tercek et al. 2021). We also consult with management or resource experts to
select cells that represent specific areas of interest. In the BBNP example, we chose to develop
CFs for a grid cell overlying the recharge area of Oak Spring, rather than the grid cell overlying
Oak Spring itself. This was a purposeful choice, because changing precipitation in the recharge
area has the most direct (mechanistic) relationship to potential changes in Oak Spring
discharge (Lawrence and Runyon 2019). Overall, researchers should be explicit that the intent
of the chosen spatial coverage where CFs are developed is intended to be representative,
informed by the management context, and any limitations and assumptions should be clearly
reflected in how that information is used.

5.3 Selecting metrics for climate futures

CFs can be characterized by general metrics such as average annual temperature and total
annual precipitation or by using climate metrics associated with specific resource sensitivities.
In the BBNP application described above, contemporary precipitation was a key determinant
of groundwater recharge so precipitation and air temperature were chosen as the climate
metrics for defining CFs (Lawrence and Runyon 2019). Temperature was used for the second
metric because it often affects water recharge dynamics by modifying evapotranspiration rates
and the fluxes of water to the atmosphere and aquifer.
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In a different application, Devils Tower National Monument completed a strategic plan
while considering the impacts of a suite of CFs on natural and cultural resources within the
park (Schuurman et al. 2019). The primary climate change concerns for the park were
increased degradation of historical structures, rock exfoliation of the tower, changes in
vegetation composition and production, erosion, and visitor and staff safety. Climate metrics
most closely associated with these concerns included (1) freeze-thaw cycles, (2) extremely hot
days, (3) mean and maximum summer water deficit, and (4) >1-in. (25.4 mm) precipitation
events (Schuurman et al. 2019). In this case, CFs were identified by plotting these four metrics
relative to each other on individual bivariate scatter plots and identifying individual projections
that were divergent across these climate axes. Alternatively, principle component analysis or
other multivariate statistical techniques could be used to aid in the identification of divergent
projections when considering multiple climate metrics (i.e., ≥ 2) simultaneously, but CF
selection will likely always involve some element of expert judgment that takes into account
variable importance and the coherence of the resulting scenarios. Ultimately, in this case, four
CFs were chosen based on individual projections. These CFs were used to identify potential
impacts on the resources of interest through a participatory scenario planning workshop (see
Section 5.5). In other situations, the relevant axes may include snow accumulation, days below
freezing, or other climate metrics that strongly affect resources.

5.4 Selecting the climate future approach and relevant climate futures

The specific decision context or application typically determines the choice of CF approach
(e.g., mitigation or adaptation emphasis, near- or long-term planning). For example, if the
intent of the work is to examine consequences of different GHG mitigation efforts, then
comparing high- and low-emissions CFs using the RCP approach is often suitable (Hoegh-
Guldberg et al. 2018). If, on the other hand, the intent is to characterize the broadest range of
potential future conditions to help a manager develop robust strategies and avoid catastrophic
surprises, more divergent (or range-capturing) quadrant or individual-projection approaches
are typically necessary. For near-term adaptation planning, the range of uncertainty represent-
ed by the RCP approach is particularly limited. The choice between quadrant and individual-
projection approaches depends on details of the decision context. For example, if the planning
effort focuses on temporal dynamics, we typically use individual projections because (as noted
above) projections may move between different sub-quadrants through time (and therefore
quadrant-based CFs do not maintain internally consistent or coherent model dynamics through
time). We often use the quadrant approach as a coarse-filter evaluation of climate change, or
for simpler planning processes, and use the individual-projection approach for detailed
investigations (where the decision process provides more time for model choice and
evaluation).

Choosing relevant CFs depends on the resources and geography of interest, among other
considerations, and we rely on the experiential knowledge of local experts to understand the
local context. For example, when examining vulnerability of forests to fire and drought in the
arid southwest United States, contrasting a “Hot Dry” and “Warm Wet” CF is important.
Similarly, in the eastern United States, comparing a “Warm Damp” and “Hot Wet” CF may be
useful because most models project increasing precipitation and the effects of flooding,
erosion, and mold development on NPS cultural resources are often a concern.

For NPS applications, we typically use two to four divergent CFs that bracket the range of
climate uncertainty relevant to the resource-management decision of interest. CFs could be
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represented by a “best-/worst-case” situation, or “most/least change” contrast, which bracket
high- to low-end changes in primary climate drivers (Snover et al. 2013). Brekke et al. (2009b)
and Littell et al. (2011) describe using bracketed futures to connect climate uncertainty with
risk tolerance. For example, risk-averse managers may plan for the most change, risk-tolerant
managers the least change, and planning around an ensemble mean condition may be risk-
neutral. In broad planning efforts addressing a diversity of resources, it is often useful to
consider more than two divergent CFs. However, the complexity of scenario planning
increases rapidly as the number of CFs increases. From practical experience, there is an upper
limit on the number of CFs an audience can reasonably consider during a planning effort
(typically up to four; Schuurman et al. 2019).

5.5 Translating climate futures into climate-resource scenarios

The main reason for creating CFs is to anticipate how plausible climate changes may affect key
resources. Resource implications (i.e., vulnerabilities) of a given CF can be assessed quanti-
tatively and/or qualitatively in a participatory process that includes scientists, resource experts,
and managers (e.g., Miller et al. 2017; Symstad et al. 2017). We refer to the range of resource-
specific effects driven by underlying CFs as divergent “climate-resource scenarios” (Fig. 1a;
Miller et al. 2019; Runyon et al. 2020). Climate-resource scenarios inherit their divergence
from the CFs, which form the template upon which the scenarios are described. We then use
these climate-resource scenarios to evaluate the consequences of management actions under a
variety of plausible, divergent, and challenging scenarios. By identifying the resource impli-
cations of different CFs, adaptation strategies can be developed to reduce the severity of these
changes or capitalize on beneficial opportunities.

We generated “Hot Dry” and “Warm Wet” climate-resource scenarios of projected Oak
Spring discharge to evaluate how often Oak Spring discharge may fall below 20 gpm in the
future using the individual-projection approach, which captured the broadest range of plausible
future conditions (Fig. 1b). To do so, we developed an empirical relationship between
discharge and 2-month lagged precipitation, using historical data; then, we used the empirical
relationship to estimate discharge from projected precipitation, based on divergent CFs
(Lawrence and Runyon 2019). Under the “Hot Dry” climate-resource scenario, the times per
decade Oak Spring fell below 20 gpm more than doubled compared to the historical period.
Under the “Warm Wet” scenario, Oak Spring fell below 20 gpm at a similar rate to the
historical condition. Based on this information, local knowledge of current and potential future
water requirements at the site, and considering the relative costs (and potential environmental
harm) of switching to another water source, the park currently plans to re-develop Oak Spring
as a water source, but will simultaneously (1) increase water conservation in the basin to
reduce demand, (2) fix leaks in the plumbing to reduce significant water losses, and (3) add
water storage to the system to help weather periods of hydrologic drought. Together, these
actions are intended to make their investment in this long-lived water supply climate-informed
and robust to even the “Hot Dry” scenario.

6 Discussion

Divergent and plausible CFs support decision makers’ needs to consider the range of potential
futures in their decision processes, avoid surprises, and avert maladaptation. Here, we describe
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CFs’ application in the NPS, where we routinely use them to help managers engage in climate-
informed management of natural and cultural resources, facilities, and human well-being and
the visitor experience. In addition to the above case study, which demonstrates the use of CFs
to support large-scale capital investment decision-making related to operations, we and our
collaborators have applied CFs to multiple strategic planning efforts across these domains
(NPS 2021). This includes standalone climate change scenario planning engagements with
Knife River Indian Villages National Historic Site (Fisichelli et al. 2016a) and Badlands
National Park (Fisichelli et al. 2016b; Miller et al. 2017; Miller et al. 2019), as well as projects
that integrated climate science into NPS planning processes for Devils Tower National
Monument (Schuurman et al. 2019) and Wind Cave National Park (Runyon et al. in press;
Symstad et al. 2017). A key lesson from this range of experiences is that CFs can serve as
fundamental climate change exposure information to aid simple to complex vulnerability
assessments and adaptation more broadly (Runyon et al. 2020).

An overarching goal in using CFs is to explore the relevant uncertainty among projections
of change. We do so by creating a tractable set of divergent CFs to characterize the range of
potential future climatic conditions. CFs are often the precursor to climate-resource scenarios,
where climate metrics—e.g., temperature, precipitation, water deficit—are linked to resources
(e.g., forest composition) or processes of interest (e.g., fire, flood, recruitment). Because CFs
are the building blocks of climate-resource scenarios, scenarios inherit the divergence of those
futures. The benefit of this approach is two-fold. First, the CFs distill an overwhelming myriad
of plausible climate projections into a manageable set. Second, a set of divergent, plausible,
and relevant CFs support scenario-based planning that can identify resource management
strategies that (1) work across all CFs (i.e., robust strategies), (2) do not work under any CF,
and (3) are needed to address highly consequential vulnerabilities specific to a subset of the
scenarios.

This work compared the divergence of CFs developed using three approaches for near-,
mid-, and long-term projection time periods. The quadrant approach and the individual-
projection approach capture a much broader range of plausible future conditions in both
near- and long-term projections compared to the RCP approach. Choosing among these
approaches to generate CFs ultimately depends on the application and available resources.
Basing divergence on RCPs is useful for comparing how different levels of GHG-emissions
mitigation influence the magnitude of climate change. For near-term adaptation planning
where understanding the broadest range of plausible near-term climate outcomes is often
desired, the quadrant and individual-projection approach may be better suited given their
capacity to bracket this uncertainty. The individual-projection approach best captured the
range of uncertainty in future conditions over all time periods. These highly divergent CFs
facilitate planning to avoid costly and catastrophic “surprises” or lost opportunities that might
arise from highly consequential climate or weather events. An important consequence of the
projection-averaging approaches (i.e., RCP ensemble, quadrant average) is that the process of
averaging results in loss of the underlying projection dynamics (e.g., interannual variability)
and extremes, which are often important for estimating resource responses.

In contrast to some other CF generation processes (e.g., Whetton et al. 2012), for NPS
applications, we generally do not evaluate the likelihood of each future (be it derived from the
RCP, quadrant, or individual-projection approach). Instead, we consider all CFs plausible for
planning purposes. Other researchers use model weighting to account for skill and interde-
pendence of models when averaging across models (Wootten et al. 2020). Although we see
value in this approach, the computational requirements to correctly execute it would not be
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feasible for routine planning within the NPS. Our approach is consistent with the Intergov-
ernmental Panel on Climate Change (IPCC), in that they do not assign probabilities to RCPs
(van Vuuren et al. 2011), and with other scenario planning processes that expressly do not
characterize scenarios in terms of relative likelihood (NAVFAC 2017; Rowland et al. 2014).

Scenario planning is founded on the concept that we do not know which future is most
probable, but we can evaluate the appropriateness and consequences of strategies (e.g., goals
and activities to achieve those goals) under each CF (i.e., wind tunneling; van der Merwe
2008). Identifying and planning for high-consequence (but potentially low-probability) futures
is an important component of scenario planning, and contrasts with forecast planning intended
to address a single most-likely future. As such, our overarching intent is to comprehensively
consider potential ways the future may unfold, as opposed to trying to predict the probability
of a specific future. In the same spirit, for the quadrant and individual-projection approaches,
we often do not focus on the central tendency of the set of projections to describe one “most
likely” future, but instead use the CFs to delimit the bounds of what is possible and then plan
within that range. Indeed, Brekke et al. (2009a) highlight some of the challenges in attempting
to derive probability distributions from climate projection information, and note “robustness”
as an alternate criterion for planning versus “optimality alone,” especially when trying to
minimize the likelihood of surprises.

CFs produced by the approaches described here benefit planning efforts because they are
(1) easy to communicate (e.g., audiences rapidly grasp concepts such as a “Warm Wet” or
“Hot Dry” future), (2) easy to operationalize because practitioners can generate them using
standard procedures, and (3) readily customized to accommodate characteristics of focal
resources and geography. CFs can address any time period, or multiple time periods. Addi-
tionally, climate metrics that define CFs can be simple (temperature, precipitation) or complex
(e.g., number of freeze-thaw cycles, growing season soil moisture). Users can choose to focus
on two CFs (e.g., best/worst, most/least, hot/dry, etc.) or more if necessary.

A variety of organizations and agencies consider multiple CFs in scenario planning, and,
like the NPS, are producing tools to streamline production of CFs and scenarios (e.g., BOR
2014; EPA 2020). The United States Forest Service has conducted an extensive evaluation to
identify a subset of GCMs that are divergent, for use in scenario planning for forest manage-
ment (Joyce and Coulson 2020; Langner et al. 2020). Cal-Adapt (https://cal-adapt.org/tools/)
uses individual projections to define different CFs (i.e., warmer/drier, cooler/wetter, average,
and compliment futures) to explore how climate change might affect California in terms of
snowpack, extreme precipitation events, extreme heat days, and wildfire (Pierce et al. 2018).
Additionally, the North Central Climate Adaptation Science Center, in collaboration with
University of Colorado Boulder, has created an R package to facilitate development of CFs for
a user-defined spatial area (https://www.earthdatascience.org/cft/index.html). CSIRO’s
Representative Climate Futures Framework (Whetton et al. 2012) provides a tool to investigate
how Australian climate projections cluster around two climate metrics and is intended to
evaluate and illustrate the range of potential change and consensus of model projections.

Our approach to generating CFs is easily revised to reflect the rapidly evolving field of
climate science. For example, an updated set of GCMs and emission pathways will be released
soon as part of the IPCC sixth assessment report (i.e., CMIP6; Eyring et al. 2016). The CF
approach can accept outputs from any GCM and emissions pathway as the raw data to
generate CFs and so is readily adaptable to these sorts of updates. Additionally, the metrics
we use to define CFs are not static and continue to evolve along with the decisions we seek to
inform.
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Scenario planning has emerged as a widely used process for climate adaptation and more
generally for resource management under uncertainty. CFs are a critical foundation for the
scenario planning process, in that they describe the divergent futures that capture the range of
changing climatic conditions that most impact resources. We described several approaches to
generate CFs that support simple to highly detailed planning processes (spanning a range of
low to high effort). Over the past decade, we have operationalized the generation of CFs, and
the use of CFs to generate relevant climate-resource scenarios. Over that time, we have found
CFs and climate-resource scenarios offer an efficient and adaptable approach to planning
across a broad range of important management contexts.
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