Leonardo Fibonacci Un article de Wikipédia, l'encyclopédie libre. Leonardo Fibonacci Statue de Léonard de Pise, dans sa ville natale Leonardo Fibonacci (v. 1175 à Pise, Italie - v. 1250) est un mathématicien italien. Il avait, à l'époque, pour nom d'usage « Leonardo Pisano » (il est encore actuellement connu en français sous l'équivalent « Léonard de Pise »), et se surnommait parfois lui-même « Leonardo Bigollo » (bigollo signifiant « voyageur » en italien). Biographie[modifier | modifier le code] Né à Pise en Italie, son éducation s'est faite en grande partie à Béjaïa en Algérie, où son père Guilielmo Bonacci était le représentant des marchands de la république de Pise. Ayant aussi voyagé en Égypte, en Syrie, en Sicile, en Provence pour le compte de son père, et rencontré divers mathématiciens, Fibonacci en rapporta à Pise en 1198 les chiffres arabes et la notation algébrique (dont certains attribuent l'introduction à Gerbert d'Aurillac). De 1202 à 1225, il est occupé par ses différents ouvrages.
La suite de Fibonacci et le nombre d’or Rating: 3.9/5 (32 votes cast) La suite de Fibonacci doit son nom au mathématicien italien Leonardo Fibonacci qui a vécut au XIIème et XIIIème siècle. Il est connu pour avoir introduit et popularisé en Europe et en Occident la numérotation indo-arabe qui a remplacé pour les calculs la notation romaine peu pratique aux opérations arithmétiques. Mais il est aussi connu pour avoir mis en évidence une suite mathématique qui porte désormais son nom. Il suffit de prendre deux nombres de départ. La suite de Fibonacci possède de nombreuses propriétés très utilisées en mathématiques. En effet: 13/8 = 1.625 ; 21/13 = 1.61538… ; 34/21 = 1.61904…et ainsi de suite…plus on avance dans la suite de Fibonacci, plus l’écart s’amenuise, et plus le rapport des deux nombres successifs (le plus grand / le plus petit) tend vers la valeur du nombre d’or 1,61803…! Dans la nature, on retrouve très souvent des motifs basé sur la suite Fibonacci et sur le nombre d’or. Sources:
Le nombre d'or L' histoire ... Il y a 10 000 ans : Première manifestation humaine de la connaissance du nombre d'or (temple d'Andros découvert sous la mer des Bahamas). 2800 av JC : La pyramide de Khéops a des dimensions qui mettent en évidence l'importance que son architecte attachait au nombre d'or. Vè siècle avant J-C. (447-432 av.JC) : Le sculpteur grec Phidias utilise le nombre d'or pour décorer le Parthénon à Athènes, en particulier pour sculpter la statue d'Athéna Parthénos . IIIè siècle avant J-C. : Euclide évoque le partage d'un segment en "extrême et moyenne raison" dans le livre VI des Eléments. 1498 : Fra Luca Pacioli, un moine professeur de mathématiques, écrit De divina proportione ("La divine proportion"). Au XIXème siècle : Adolf Zeising (1810-1876), docteur en philosophie et professeur à Leipzig puis Munich, parle de "section d'or" (der goldene Schnitt) et s'y intéresse non plus à propos de géométrie mais en ce qui concerne l'esthétique et l'architecture.
Suite de Fibonacci The Fibonacci Sequence is the series of numbers: The next number is found by adding up the two numbers before it. The 2 is found by adding the two numbers before it (1+1) Similarly, the 3 is found by adding the two numbers before it (1+2), And the 5 is (2+3), and so on! Example: the next number in the sequence above is 21+34 = 55 It is that simple! Here is a longer list: Can you figure out the next few numbers? Makes A Spiral When we make squares with those widths, we get a nice spiral: Do you see how the squares fit neatly together? The Rule The Fibonacci Sequence can be written as a "Rule" (see Sequences and Series). First, the terms are numbered from 0 onwards like this: So term number 6 is called x6 (which equals 8). So we can write the rule: The Rule is xn = xn-1 + xn-2 where: xn is term number "n" xn-1 is the previous term (n-1) xn-2 is the term before that (n-2) Example: term 9 is calculated like this: Golden Ratio And here is a surprise. Using The Golden Ratio to Calculate Fibonacci Numbers
somme des termes d'une suite géométrique Soit Sn la somme des n premiers termes d'une suite géométrique de premier terme a et de raison q avec q ≠ 1 et q ≠ 0. La somme Sn s' écrit donc : Sn = a + aq + aq2 + aq3 + ... ... + aqn−1 . Si on multiplie tous les termes par la raison q, nous obtenons qSn = aq + aq2 + aq3 + aq4 + ... ... + aqn . On obtient ensuite en faisant la différence entre qSn et Sn : qSn − Sn = aq + aq2 + aq3 + aq4 + ... ... + aqn − (a + aq + aq2 + aq3 + ... ... + aqn−1) qSn − Sn = aq + aq2 + aq3 + aq4 + ... ... + aqn−1 − ( aq + aq2 + aq3 + ... ... + aqn−1) − a + aqn qSn − Sn = aqn − a Sn ( q − 1 ) = a ( qn − 1 ) , On obtient donc : Sn = a ( qn − 1 ) / ( q − 1 ) car q ≠ 1 . Pour obtenir la somme des n premiers termes d'une suite géométrique, il faut multiplier le premier terme de cette suite par le quotient de la puissance niéme de la raison diminuée de 1 par la raison diminuée de 1. La formule est donc : Sn = a (1 − qn ) / (1 − q ) ou encore :
Le nombre d'or (Vitruve, architecte romain 1er siècle avant notre ère). Ainsi si a et b sont les deux grandeurs alors nous aurons : a/b = (a + b) / a. a/b = 1 + b/a pour simplifier, prenons comme variable x = a/b. alors nous obtenons : x = 1 + 1/x x - 1 - 1/x = 0 comme x non nul, nous obtenons l'équation suivante que nous noterons (E) : x2 - x - 1 = 0 qui admet comme racine positive : x = que nous notons Φ et vaut à peu près 1,618... C'est cette valeur qui est appelée le nombre d'or (dit Φ (phi) en hommage au sculpteur grec Phidias qui s'en servit dans les proportions du Parthénon à Athènes. A ce stade, je vous soumets un petit problème que m'a proposé Dominique Payeur : Je dispose d'un capital. Nous pouvons d'ores et déjà noter quelques résultats : On pourrait aussi sans équation du second degré montrer que 1/Φ = Φ - 1. Des équations précédentes, nous pouvons déduire : x2 = x + 1 et x = 1 + 1/x d'où et on a aussi : Le nombre d’or peut s’écrire à l’aide d’une infinité de radicaux emboîtés Les FRACTIONS
Fibonacci Numbers, the Golden section and the Golden String Fibonacci Numbers and the Golden Section This is the Home page for Dr Ron Knott's multimedia web site on the Fibonacci numbers, the Golden section and the Golden string hosted by the Mathematics Department of the University of Surrey, UK. The Fibonacci numbers are The golden section numbers are 0·61803 39887... = phi = φ and 1·61803 39887... = Phi = Φ The golden string is 1 0 1 1 0 1 0 1 1 0 1 1 0 1 0 1 1 0 1 ... a sequence of 0s and 1s that is closely related to the Fibonacci numbers and the golden section. If you want a quick introduction then have a look at the first link on the Fibonacci numbers and where they appear in Nature. THIS PAGE is the Menu page linking to other pages at this site on the Fibonacci numbers and related topics above. Fibonacci Numbers and Golden sections in Nature Ron Knott was on Melvyn Bragg's In Our Time on BBC Radio 4, November 29, 2007 when we discussed The Fibonacci Numbers (45 minutes). listen again online or download the podcast. and phi . The Golden Section
suite de Fibonacci et le nombre d'or calcul des termes de la suite - propriétés de la suite - démontration que (un+1 / un) tend vers le nombre d'or La suite de Fibonacci tient son nom du mathématicien italien Leonardo Fibonacci, qui a vécu à Pise au XIIème siècle (1175-1240), d'où son nom de Léonard de Pise, en référence à Léonard de Vinci. La suite de Fibonacci se construit facilement : chaque terme de la suite, à partir du rang 2, s'obtient en additionnant les deux précédents, les deux premiers termes étant 0 et 1. Appelons (un) la suite de Fibonacci. on a alors un+2 = un+1 + un. Chaque terme de cette suite, à partir du rang 2, est donc la somme des deux termes précédents. La suite de Fibonacci n'est ni arithmétique, ni géométrique. En effet, u1 − u0 = 1 − 0 = 1 et u2 − u1 = 1 − 1 = 0. Son premier terme étant 0, elle ne peut être géométrique. Calcul des termes de la suite Fibonacci En calculant les termes de la suite, on constate que les termes de la suite de Fibonacci sont très rapidement élevés. Initialisation Pour n = 2 et
Fibonacci number A tiling with squares whose side lengths are successive Fibonacci numbers In mathematics, the Fibonacci numbers or Fibonacci sequence are the numbers in the following integer sequence: or (often, in modern usage): (sequence A000045 in OEIS). The Fibonacci spiral: an approximation of the golden spiral created by drawing circular arcs connecting the opposite corners of squares in the Fibonacci tiling;[3] this one uses squares of sizes 1, 1, 2, 3, 5, 8, 13, 21, and 34. By definition, the first two numbers in the Fibonacci sequence are either 1 and 1, or 0 and 1, depending on the chosen starting point of the sequence, and each subsequent number is the sum of the previous two. In mathematical terms, the sequence Fn of Fibonacci numbers is defined by the recurrence relation with seed values or The Fibonacci sequence is named after Fibonacci. Fibonacci numbers are closely related to Lucas numbers in that they are a complementary pair of Lucas sequences. Origins[edit] List of Fibonacci numbers[edit] and
Codage de Fibonacci Un article de Wikipédia, l'encyclopédie libre. Le codage de Fibonacci est un codage entropique utilisé essentiellement en compression de données . Il utilise les nombres de la suite de Fibonacci , dont les termes ont la particularité d'être composés de la somme des deux termes consécutifs précédents, ce qui lui confère une robustesse aux erreurs. Le code de Fibonacci produit est un code préfixe et universel . Dans ce code, la séquence « 11 » apparaît uniquement en fin de chaque nombre encodé, et sert ainsi de délimiteur. Principe [ modifier ] Codage [ modifier ] Pour encoder un entier X : Créer un tableau avec 2 lignes. Exemple décomposition de 50. Les éléments de la 1 re ligne du tableau sont : 1 2 3 5 8 13 21 34 50 = 34 + 13 + 3 (50 = 34 + 8 + 5 + 3 est incorrect car le 13 n'a pas été utilisé) D'où le tableau : Il reste à écrire le codage du nombre 50 : 001001011 Décodage [ modifier ] Premier exemple Décoder le nombre 10001010011 On effectue la somme : 1 + 8 + 21 + 89 = 119 Deuxième exemple
Biographie : Leonardo Fibonacci (1170 [Pise] - 1245 [Pise]) Leonard de Pise, plus connu sous le nom de Fibonacci, est le premier grand mathématicien de l'ère chrétienne du monde occidental. D'assez nombreux détails de sa jeunesse nous sont connus par les propos qu'il tient lui-même dans la préface d'un de ses livres, le Liber abaci. Né à Pise vers 1170, il rejoint très jeune son père à la colonie de Bujania, en Algérie, où ce dernier est responsable du bureau des douanes pour le compte de l'ordre des marchands de Pise. Voulant faire de son fils un marchand, il l'initie à l'art du calcul indo-arabe. Fibonacci apprendra en outre les savoirs et algorithmes orientaux grâce à ses nombreux voyages en Syrie, en Grèce, en Egypte. Fibonacci vivait avant l'invention de l'imprimerie, ce qui signifiait que pour avoir plusieurs exemplaires du même ouvrage, il fallait le travail entièrement manuel d'un copiste. Un autre des plaisirs de l'empereur était les défis mathématiques qu'un membre de sa cour posait à la communauté des scientifiques.
Fibonacci Leonardo Bonacci (c. 1170 – c. 1250)[2]—known as Fibonacci (Italian: [fiboˈnattʃi]), and also Leonardo of Pisa, Leonardo Pisano, Leonardo Pisano Bigollo, Leonardo Fibonacci—was an Italian mathematician, considered as "the most talented Western mathematician of the Middle Ages.".[3][4] Fibonacci introduced to Europe the Hindu–Arabic numeral system primarily through his composition in 1202 of Liber Abaci (Book of Calculation).[5] He also introduced to Europe the sequence of Fibonacci numbers (discovered earlier in India but not previously known in Europe), which he used as an example in Liber Abaci.[6] Life[edit] Fibonacci was born around 1170 to Guglielmo Bonacci, a wealthy Italian merchant and, by some accounts, the consul for Pisa. Guglielmo directed a trading post in Bugia, a port in the Almohad dynasty's sultanate in North Africa. Fibonacci travelled with him as a young boy, and it was in Bugia (now Béjaïa, Algeria) that he learned about the Hindu–Arabic numeral system.[2] Legacy[edit]
The Fibonacci Numbers and Golden section in Nature - 1 This page has been split into TWO PARTS. This, the first, looks at the Fibonacci numbers and why they appear in various "family trees" and patterns of spirals of leaves and seeds. The second page then examines why the golden section is used by nature in some detail, including animations of growing plants. 0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377, 610, 987 ..More.. 1 Rabbits, Cows and Bees Family Trees Let's look first at the Rabbit Puzzle that Fibonacci wrote about and then at two adaptations of it to make it more realistic. 1.1 Fibonacci's Rabbits The original problem that Fibonacci investigated (in the year 1202) was about how fast rabbits could breed in ideal circumstances. Suppose a newly-born pair of rabbits, one male, one female, are put in a field. How many pairs will there be in one year? At the end of the first month, they mate, but there is still one only 1 pair. The number of pairs of rabbits in the field at the start of each month is 1, 1, 2, 3, 5, 8, 13, 21, 34, ...
Les retracements de Fibonacci : Analyse technique Vous avez surement un jour entendu parlé de la suite de Fibonacci, rappelez vous : 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144 …… Pour les obtenir c’est très simple. Vous additionnez les deux premiers chiffres pour calculer le 3eme. Ainsi 1+1=2 ;1+2=3 ;2+3=5… quelques souvenirs vous reviennent ? Venons en aux nombres d’or maintenant. Les retracements de Fibonacci : Parlons maintenant de ce pourquoi vous êtes venus, les niveaux de retracements de Fibonacci : 23,6%, 38,2%, 50,0%, 61.8%, 100%. - Une tendance haussière est marquée par des phases de corrections - Une tendance baissière est marquée par des phases de rebonds. Ce sont ces corrections ou rebonds qui sont appelés des retracements. Pour déterminer le retracement 50.0% de l'exemple précédent, vous ferez ainsi le calcul suivant : 1.4110 - (0.0100 * 50%) = 1.4060 soit un retracement de 50 pips. Pour le retracement 38.2%, vous ferez le calcul suivant : 1.4110 - (0.0100 * 38.2%) = 1.4072.