Zoom
Trash
Related:
Scattering theory Top: the real part of a plane wave travelling upwards. Bottom: The real part of the field after inserting in the path of the plane wave a small transparent disk of index of refraction higher than the index of the surrounding medium. This object scatters part of the wave field, although at any individual point, the wave's frequency and wavelength remain intact. In mathematics and physics, scattering theory is a framework for studying and understanding the scattering of waves and particles. Prosaically, wave scattering corresponds to the collision and scattering of a wave with some material object, for instance sunlight scattered by rain drops to form a rainbow. Since its early statement for radiolocation, the problem has found vast number of applications, such as echolocation, geophysical survey, nondestructive testing, medical imaging and quantum field theory, to name just a few. Conceptual underpinnings[edit] Composite targets and range equations[edit] In theoretical physics[edit] [edit]
Schrödinger picture In physics, the Schrödinger picture (also called the Schrödinger representation[1]) is a formulation of quantum mechanics in which the state vectors evolve in time, but the operators (observables and others) are constant with respect to time.[2][3] This differs from the Heisenberg picture which keeps the states constant while the observables evolve in time, and from the interaction picture in which both the states and the observables evolve in time. The Schrödinger and Heisenberg pictures are related as active and passive transformations and have the same measurement statistics. In the Schrödinger picture, the state of a system evolves with time. The evolution for a closed quantum system is brought about by a unitary operator, the time evolution operator. For time evolution from a state vector at time to a state vector , the time-evolution operator is commonly written , and one has where the exponent is evaluated via its Taylor series. Background[edit] and returns some other ket , or both.
Schrödinger equation In quantum mechanics, the Schrödinger equation is a partial differential equation that describes how the quantum state of some physical system changes with time. It was formulated in late 1925, and published in 1926, by the Austrian physicist Erwin Schrödinger.[1] In classical mechanics, the equation of motion is Newton's second law, and equivalent formulations are the Euler–Lagrange equations and Hamilton's equations. All of these formulations are used to solve for the motion of a mechanical system and mathematically predict what the system will do at any time beyond the initial settings and configuration of the system. In quantum mechanics, the analogue of Newton's law is Schrödinger's equation for a quantum system (usually atoms, molecules, and subatomic particles whether free, bound, or localized). It is not a simple algebraic equation, but (in general) a linear partial differential equation. The concept of a state vector is a fundamental postulate of quantum mechanics.
Matrix mechanics Matrix mechanics is a formulation of quantum mechanics created by Werner Heisenberg, Max Born, and Pascual Jordan in 1925. In some contrast to the wave formulation, it produces spectra of energy operators by purely algebraic, ladder operator, methods.[1] Relying on these methods, Pauli derived the hydrogen atom spectrum in 1926,[2] before the development of wave mechanics. Development of matrix mechanics[edit] In 1925, Werner Heisenberg, Max Born, and Pascual Jordan formulated the matrix mechanics representation of quantum mechanics. Epiphany at Helgoland[edit] In 1925 Werner Heisenberg was working in Göttingen on the problem of calculating the spectral lines of hydrogen. "It was about three o' clock at night when the final result of the calculation lay before me. The Three Fundamental Papers[edit] After Heisenberg returned to Göttingen, he showed Wolfgang Pauli his calculations, commenting at one point:[4] In the paper, Heisenberg formulated quantum theory without sharp electron orbits. W.
Quantum statistical mechanics Expectation[edit] From classical probability theory, we know that the expectation of a random variable X is completely determined by its distribution DX by assuming, of course, that the random variable is integrable or that the random variable is non-negative. Similarly, let A be an observable of a quantum mechanical system. uniquely determines A and conversely, is uniquely determined by A. Similarly, the expected value of A is defined in terms of the probability distribution DA by Note that this expectation is relative to the mixed state S which is used in the definition of DA. Remark. One can easily show: Note that if S is a pure state corresponding to the vector ψ, then: Von Neumann entropy[edit] Of particular significance for describing randomness of a state is the von Neumann entropy of S formally defined by Actually, the operator S log2 S is not necessarily trace-class. and we define The convention is that , since an event with probability zero should not contribute to the entropy. and is
Interaction picture Equations that include operators acting at different times, which hold in the interaction picture, don't necessarily hold in the Schrödinger or the Heisenberg picture. This is because time-dependent unitary transformations relate operators in one picture to the analogous operators in the others. Definition[edit] Operators and state vectors in the interaction picture are related by a change of basis (unitary transformation) to those same operators and state vectors in the Schrödinger picture. Any possible choice of parts will yield a valid interaction picture; but in order for the interaction picture to be useful in simplifying the analysis of a problem, the parts will typically be chosen so that H0,S is well understood and exactly solvable, while H1,S contains some harder-to-analyze perturbation to this system. by the corresponding time-evolution operator in the definitions below. State vectors[edit] A state vector in the interaction picture is defined as[4] Operators[edit] References[edit]
Phase space formulation The theory was fully detailed by Hip Groenewold in 1946 in his PhD thesis,[1] with significant parallel contributions by Joe Moyal,[2] each building off earlier ideas by Hermann Weyl[3] and Eugene Wigner.[4] The chief advantage of the phase space formulation is that it makes quantum mechanics appear as similar to Hamiltonian mechanics as possible by avoiding the operator formalism, thereby "'freeing' the quantization of the 'burden' of the Hilbert space."[5] This formulation is statistical in nature and offers logical connections between quantum mechanics and classical statistical mechanics, enabling a natural comparison between the two (cf. classical limit). Quantum mechanics in phase space is often favored in certain quantum optics applications (see optical phase space), or in the study of decoherence and a range of specialized technical problems, though otherwise the formalism is less commonly employed in practical situations.[6] Phase space distribution[edit] Star product[edit] or etc.)
Heisenberg picture It stands in contrast to the Schrödinger picture in which the operators are constant, instead, and the states evolve in time. The two pictures only differ by a basis change with respect to time-dependency, which corresponds to the difference between active and passive transformations. The Heisenberg picture is the formulation of matrix mechanics in an arbitrary basis, in which the Hamiltonian is not necessarily diagonal. It further serves to define a third, hybrid, picture, the Interaction picture. Mathematical details[edit] In the Heisenberg picture of quantum mechanics the state vectors, |ψ⟩, do not change with time, while observables A satisfy This approach also has a more direct similarity to classical physics: by simply replacing the commutator above by the Poisson bracket, the Heisenberg equation reduces to an equation in Hamiltonian mechanics. Derivation of Heisenberg's equation[edit] where H is the Hamiltonian and ħ is the reduced Planck constant. It now follows that Thus which implies