Zoom
Trash
Related: Neuroscience
Neuron All neurons are electrically excitable, maintaining voltage gradients across their membranes by means of metabolically driven ion pumps, which combine with ion channels embedded in the membrane to generate intracellular-versus-extracellular concentration differences of ions such as sodium, potassium, chloride, and calcium. Changes in the cross-membrane voltage can alter the function of voltage-dependent ion channels. If the voltage changes by a large enough amount, an all-or-none electrochemical pulse called an action potential is generated, which travels rapidly along the cell's axon, and activates synaptic connections with other cells when it arrives. Neurons do not undergo cell division. Overview[edit] A neuron is a specialized type of cell found in the bodies of all eumetozoans. Although neurons are very diverse and there are exceptions to nearly every rule, it is convenient to begin with a schematic description of the structure and function of a "typical" neuron. Polarity[edit]
Brain Atlas - Introduction The central nervous system (CNS) consists of the brain and the spinal cord, immersed in the cerebrospinal fluid (CSF). Weighing about 3 pounds (1.4 kilograms), the brain consists of three main structures: the cerebrum, the cerebellum and the brainstem. Cerebrum - divided into two hemispheres (left and right), each consists of four lobes (frontal, parietal, occipital and temporal). The outer layer of the brain is known as the cerebral cortex or the ‘grey matter’. – closely packed neuron cell bodies form the grey matter of the brain. Cerebellum – responsible for psychomotor function, the cerebellum co-ordinates sensory input from the inner ear and the muscles to provide accurate control of position and movement. Brainstem – found at the base of the brain, it forms the link between the cerebral cortex, white matter and the spinal cord. Other important areas in the brain include the basal ganglia, thalamus, hypothalamus, ventricles, limbic system, and the reticular activating system. Neurons
UCSB scientists discover how the brain encodes memories at a cellular level (Santa Barbara, Calif.) –– Scientists at UC Santa Barbara have made a major discovery in how the brain encodes memories. The finding, published in the December 24 issue of the journal Neuron, could eventually lead to the development of new drugs to aid memory. The team of scientists is the first to uncover a central process in encoding memories that occurs at the level of the synapse, where neurons connect with each other. "When we learn new things, when we store memories, there are a number of things that have to happen," said senior author Kenneth S. Kosik, co-director and Harriman Chair in Neuroscience Research, at UCSB's Neuroscience Research Institute. "One of the most important processes is that the synapses –– which cement those memories into place –– have to be strengthened," said Kosik. This is a neuron. (Photo Credit: Sourav Banerjee) Part of strengthening a synapse involves making new proteins. When the signal comes in, the wrapping protein degrades or gets fragmented.
The Learning Brain Gets Bigger--Then Smaller With age and enough experience, we all become connoisseurs of a sort. After years of hearing a favorite song, you might notice a subtle effect that’s lost on greener ears. Perhaps you’re a keen judge of character after a long stint working in sales. Or maybe you’re one of the supremely practiced few who tastes his money’s worth in a wine. Whatever your hard-learned skill is, your ability to hear, see, feel, or taste with more nuance than a less practiced friend is written in your brain. One classical line of work has tackled these questions by mapping out changes in brain organization following intense and prolonged sensory experience. But don’t adopt that slogan quite yet. If you were to look at the side of someone’s brain, focusing on the thin sliver of auditory cortex, it would seem fairly uniform, with only a few blood vessels to provide some bearing. And yet, some aspects of this theory invited skepticism. So what does change? Still, there’s a big question lurking here.
Meditation found to increase brain size Kris Snibbe/Harvard News Office Sara Lazar (center) talks to research assistant Michael Treadway and technologist Shruthi Chakrapami about the results of experiments showing that meditation can increase brain size. People who meditate grow bigger brains than those who don’t. Researchers at Harvard, Yale, and the Massachusetts Institute of Technology have found the first evidence that meditation can alter the physical structure of our brains. In one area of gray matter, the thickening turns out to be more pronounced in older than in younger people. “Our data suggest that meditation practice can promote cortical plasticity in adults in areas important for cognitive and emotional processing and well-being,” says Sara Lazar, leader of the study and a psychologist at Harvard Medical School. The researchers compared brain scans of 20 experienced meditators with those of 15 nonmeditators. Study participants meditated an average of about 40 minutes a day. Controlling random thoughts Slowing aging?
Imagining the Future Invokes Your Memory I REMEMBER my retirement like it was yesterday. As I recall, I am still working, though not as hard as I did when I was younger. My wife and I still live in the city, where we bicycle a fair amount and stay fit. We have a favorite coffee shop where we read the morning papers and say hello to the other regulars. We don’t play golf. In reality, I’m not even close to retirement. A new study from the January issue of Psychological Science may explain why we are all so optimistic about what’s to come. Cognitive scientists are very interested in people’s “remembered futures.” Still, very little was known until recently about how these simulations work. These are very difficult questions to study in a laboratory—or at least they were until now. Recalling Tomorrow Szpunar and his colleagues began by collecting a lot of biographical detail from volunteers’ actual memories.
The Brain May Disassemble Itself in Sleep Compared with the hustle and bustle of waking life, sleep looks dull and unworkmanlike. Except for in its dreams, a sleeping brain doesn’t misbehave or find a job. It also doesn’t love, scheme, aspire or really do much we would be proud to take credit for. Yet during those quiet hours when our mind is on hold, our brain does the essential labor at the heart of all creative acts. In a provocative new theory about the purpose of sleep, neuroscientist Giulio Tononi of the University of Wisconsin–Madison has proposed that slumber, to cement what we have learned, must also spur the brain’s undoing. Select an option below: Customer Sign In *You must have purchased this issue or have a qualifying subscription to access this content
Is the Purpose of Sleep to Let Our Brains “Defragment,” Like a Hard Drive? | The Crux Neuroskeptic is a neuroscientist who takes a skeptical look at his own field and beyond at the Neuroskeptic blog. Why do we sleep? We spend a third of our lives doing so, and all known animals with a nervous system either sleep, or show some kind of related behaviour. There are plenty of theories. But others argue that sleep has a restorative function—something about animal biology means that we need sleep to survive. Waking up after a good night’s sleep, you feel restored, and many studies have shown the benefits of sleep for learning, memory, and cognition. Recently, some neuroscientists have proposed that the function of sleep is to reorganize connections and “prune” synapses—the connections between brain cells. This illustration, taken from their paper, shows the basic idea: While we’re awake, your brain is forming memories. Yet this poses a problem for the brain. Worse, most of the synapses that strengthen during memory are based on glutamate. So what’s the evidence?
Image by Bernd Knoll at the University of Tubingen by kaspervandenberg Dec 23