Zoom
Trash
Igor et Grichka Bogdanoff. Pour les articles homonymes, voir Bogdanov.
Igor et Grichka Bogdanoff Grichka (à gauche) et Igor (à droite) Bogdanoff en 2016. Grichka (à gauche) et Igor (à droite) Bogdanoff en 2010. L’origine et l’avenir du monde… Théorème de complétude de Gödel. La formule En logique mathématique, le théorème de complétude du calcul des prédicats du premier ordre[1] dresse une correspondance entre la sémantique[2] et les démonstrations d'un système de déduction en logique du premier ordre.
En termes intuitifs le théorème de complétude construit un pont entre vérité et démontrabilité formelle : tout énoncé vrai est démontrable. Plus précisément le théorème de complétude affirme que si un énoncé est conséquence sémantique d'une théorie que l'on peut décrire dans le formalisme du calcul des prédicats du premier ordre, c'est-à-dire qu'il est vrai dans tous les modèles de cette théorie, alors il est conséquence syntaxique de cette théorie : il existe une démonstration formelle qui dérive cet énoncé à partir des axiomes de la théorie en utilisant les règles d'un système de déduction comme la déduction naturelle, le calcul des séquents ou un système à la Hilbert.
Histoire[modifier | modifier le code] Quelques définitions[modifier | modifier le code] Théorèmes d'incomplétude de Gödel. Les théorèmes d'incomplétude de Gödel sont deux théorèmes célèbres de logique mathématique, publiés par Kurt Gödel en 1931 dans son article Über formal unentscheidbare Sätze der Principia Mathematica und verwandter Systeme (en) (« Sur les propositions formellement indécidables des Principia Mathematica et des systèmes apparentés »).
Ils ont marqué un tournant dans l'histoire de la logique en apportant une réponse négative à la question de la démonstration de la cohérence des mathématiques posée plus de 20 ans auparavant par le programme de Hilbert. Le premier théorème d'incomplétude établit qu'une théorie suffisante pour y démontrer les théorèmes de base de l'arithmétique est nécessairement incomplète, au sens où il existe des énoncés qui n'y sont ni démontrables, ni réfutables (un énoncé est démontrable si on peut le déduire des axiomes de la théorie, il est réfutable si on peut déduire sa négation).
On parle alors d'énoncés indécidables dans la théorie. ), etc.). On en déduit que : Le théorème d’incomplétude de Gödel. C’est en cours de philo que j’en ai entendu parler pour la première fois !
Notre prof nous faisait un cours sur la logique et ses fondements, et c’est alors qu’elle le mentionna : le fameux théorème de Gödel, celui qui prouve que quoi qu’on fasse, il existe des énoncés mathématiques vrais, mais indémontrables. Les mathématiques resteront à tout jamais un édifice imparfait ! J’en fus évidemment tout retourné et fasciné : comment était-il possible qu’un truc pareil existe ? Comment prouver ce résultat pouvait même être du domaine de la science ? Peut-on tout démontrer en mathématiques ? Preview: How the Fourier Transform Works: Lecture #4 - Euler's Identity (Full Video) The God equation Euler's Identity. Identité d'Euler. Un article de Wikipédia, l'encyclopédie libre.
En mathématiques, l'identité d'Euler est une relation entre plusieurs constantes fondamentales et utilisant les trois opérations arithmétiques d'addition, multiplication et exponentiation : Elle est nommée d'après le mathématicien Leonhard Euler qui la fait apparaître dans son Introductio, publié à Lausanne en 1748.
Démonstration[modifier | modifier le code]