Botanique Algorithmique : Accueil
Trace theory
From Wikipedia, the free encyclopedia Theory of trace monoids In mathematics and computer science, trace theory aims to provide a concrete mathematical underpinning for the study of concurrent computation and process calculi. The underpinning is provided by an algebraic definition of the free partially commutative monoid or trace monoid, or equivalently, the history monoid, which provides a concrete algebraic foundation, analogous to the way that the free monoid provides the underpinning for formal languages. The power of trace theory stems from the fact that the algebra of dependency graphs (such as Petri nets) is isomorphic to that of trace monoids, and thus, one can apply both algebraic formal language tools, as well as tools from graph theory.
L-Systems Explorer
Download here (94K) - Note: you will need MFC42.DLL to run this. LSE, or L-Systems Explorer, is a program that allows you to design or view Lindenmeyer Systems (L-Systems). L-Systems are simple string-based commands (much like Turtle graphics) that allow various shapes to be drawn. LSE has the following improvements: Allows for up to 26 different rules Loading and saving of rules Zooming, panning and depth adjustment. Note this is the same L-System, with the depths set at 0-4 from left to right. L-System Commands L-Systems Explorer allows you to assign up to 26 recursive rules. Using LSE LSE is simple to use, try loading in some of the preset systems (*.lse) and then messing about with the parameters. Once the system has been drawn you can pan the system about by dragging with your mouse. Version 1.1 A few bugs fixed, and gradient support added. Article content copyright © James Matthews, 2002.
Lehrstuhl Grafische Systeme - Projekte - Virtuelle Pflanzen
Relationale Wachstumsgrammatiken als Basis für ein mehrskaliges metabolisches Strukturmodell der Gerste: Neue Techniken der Informatik für Functional-Structural Plant Models (FSPM) Im Rahmen des Vorläuferprojekts wurde die formale Modellspezifikations-Sprache der Relationalen Wachstumsgrammatiken (Relational Growth Grammars, RGG) entwickelt, mit der interaktiven Software GroIMP (Growth Grammar Related Interactive Modelling Platform) operabel gemacht und an ersten Beispielen demonstriert. Da Formalismus und Software zunächst schrittweise ausgebaut und getestet werden mussten, waren diese Beispiele bisher auf sehr ausschnitthafte Modelle beschränkt. Kooperationspartner: Institut für Pflanzengenetik und Kulturpflanzenforschung (IPK) Gatersleben, Dr. Abschlussbericht andere Projekte am Lehrstuhl zurück zur Homepage des Lehrstuhls
La beauté des L-Systèmes - Ekino FR
You can also read this article in english. De quoi s’agit-il ? Un système de Lindenmayer (communément appelé L-système) est un modèle algorithmique récursif inspiré par la biologie et inventé en 1968 par le biologiste hongrois Aristid Lindenmayer. Il vise à fournir un moyen de modéliser la croissance de plantes et bactéries. Le concept fondamental des L-Systèmes est la réécriture, un procédé efficace permettant de générer des objets complexes en remplaçant simplement tout ou partie d’un objet initial. Nous pouvons envisager cela comme une cellule qui se divise à chaque itération afin de générer un organisme plus abouti. Si vous êtes curieux, wikipedia en fourni une description plus détaillée. Très bien, mais en quoi cela peut-il vous intéresser et, plus important encore, que peut-on en faire ? Il existe une multitude de cas d’usages, certains se sont même amusés à générer de la musique à partir de ceux-là, mais nous allons nous concentrer sur des applications visuelles. Qui va produire :
Rewriting
Replacing subterm in a formula with another term In mathematics, computer science, and logic, rewriting covers a wide range of methods of replacing subterms of a formula with other terms. Such methods may be achieved by rewriting systems (also known as rewrite systems, rewrite engines,[1][2] or reduction systems). Rewriting can be non-deterministic. Example cases[edit] Logic[edit] In logic, the procedure for obtaining the conjunctive normal form (CNF) of a formula can be implemented as a rewriting system.[6] The rules of an example of such a system would be: (double negation elimination) (De Morgan's laws) (distributivity) [note 1] where the symbol ( ) indicates that an expression matching the left hand side of the rule can be rewritten to one formed by the right hand side, and the symbols each denote a subexpression. Arithmetic[edit] For example, the computation of 2+2 to result in 4 can be duplicated by term rewriting as follows: where the rule numbers are given above the rewrites-to arrow. . .
Newsroom - Software allows interactive tabletop displays on Web
Researchers have developed a new type of software that enables people to use large visual displays and touch screens interactively over the Internet for business and homeland security applications. Here, users at Purdue and the University of Manitoba in Canada interact as if they were in the same room using the same display. (School of Electrical and Computer Engineering, Purdue University) Download image WEST LAFAYETTE, Ind. - Researchers have developed a new type of software that enables people to use large visual displays and touch screens interactively over the Internet for business and homeland security applications. Tabletop touch-operated displays are becoming popular with professionals in various fields, said Niklas Elmqvist, an assistant professor of electrical and computer engineering at Purdue University. "These displays are like large iPhones, and because they are large they invite collaboration," he said. Writer: Emil Venere, 765-494-4709, venere@purdue.edu
powerPlant | Free Graphics software downloads