background preloader

The Science Behind The Trivedi Effect®

The Science Behind The Trivedi Effect®
Atoms exist in all states of matter. Even the cells of microbes, plants, human beings and all other living / non-living things consist entirely of atoms in the form of complex molecules. Atoms, at the most elementary level, are made from electrons, protons, neutrons and several known and unknown subatomic particles. Physicists and chemists hypothesize several theories to explain the systematic and disciplinary existence of various species inside the atom, the nature of bonds between atoms in condensed states (such as solids and liquids), as well as for the way the particles are working inside the atom. There have been several attempts to develop a unified picture that links the macroscopic universe and the microscopic atomic and subatomic world. The dual nature of matter and radiation led to quantum indeterminacy. Atoms and subatomic particles are in continuous movement. According to the prophetic novel “The Trigger,” written by late Sir Arthur C. Mr.

"An Effect of Biofield Treatment on Multidrug-resistant Burkholderia ce" by Mahendra Kumar Trivedi Abstract Burkholderia cepacia (B. cepacia) is an opportunistic, Gram negative pathogen which causes infection mainly in immunocompromised population and associated with high rate of morbidity and mortality in cystic fibrosis patients. Aim of the present study was to analyze the impact of biofield treatment on multidrug resistant B. cepacia. Clinical sample of B. cepacia was divided into two groups i.e. control and biofield treated. The analysis was done after 10 days of treatment and compared with control group. Citation Information Mahendra Kumar Trivedi.

Mahendra Kumar Trivedi Mahendra Kumar Trivedi earned his 5-year Bachelor’s degree in Mechanical Engineering in 1985 . Mahendra Kumar Trivedi worked as an Engineer for 10 years. In 1995, Mr. Trivedi discovered that he had the unique ability to harness the energy from the universe and transmit it to anywhere on the globe, infusing it into living organisms and nonliving materials, thus optimizing their potential. Impact of Biofield Treatment on Characteristics of Magnesium Abstract Magnesium (Mg), present in every cell of all living organisms, is an essential nutrient and primarily responsible for catalytic reaction of over 300 enzymes. The aim of present study was to evaluate the effect of biofield treatment on atomic and physical properties of magnesium powder. Magnesium powder was divided into two parts denoted as control and treatment. Control part was remained as untreated and treatment part received biofield treatment. Both control and treated magnesium samples were characterized using X-ray diffraction (XRD), surface area and particle size analyzer. Keywords: Biofield treatment; Magnesium powder; X-ray diffraction; Fourier transform infrared; Particle size; Surface area Introduction Magnesium (Mg) is the third most abundant metal in the earth’s crust. In physics, the energy is considered as the ability to do work; which fundamentally interrelates with matter as E=mc2 (Einstein’s famous equation). Experimental X-ray diffraction study G = kλ/(bCosθ), 1.

Impact of Human Biofield Energy on 1,2,3-Trimethoxybenzene Abstract Study background: 1,2,3-Trimethoxybenzene is an important compound used for the synthesis of chemicals and pharmaceutical agents. The objective of this study was to investigate the influence of biofield energy treatment on the physical, thermal and spectral properties of 1,2,3-trimethoxybenzene. Methods: The study was performed by dividing the sample into two groups (control and treated). The control group remained as untreated, while the treated group received Mr Trivedi’s biofield energy treatment. The control and treated 1,2,3-trimethoxybenzene samples were then characterized by X-ray diffraction (XRD), differential scanning calorimetry (DSC), thermogravimetric analysis (TGA), Fourier transform infrared (FT-IR) spectroscopy, and ultra violetvisible spectroscopy (UV-Vis) analysis. Results: XRD studies revealed the significant increase in crystallite size of treated sample by 45.96% as compared to the control sample. Introduction Materials and Methods Characterization G=kλ/ (bCosθ)

Impact of Biofield Treatment on Klebsiella Pneumoniae Abstract Increasing cancer rates particularly in the developed world are associated with related lifestyle and environmental exposures. Combined immunotherapy and targeted therapies are the main treatment approaches in advanced and recurrent cancer. An alternate approach, energy medicine is increasingly used in life threatening problems to promote human wellness. This study aimed to investigate the effect of biofield treatment on cancer biomarkers involved in human endometrium and prostate cancer cell lines. Keywords: Biofield treatment; Cancer biomarker; ELISA; TNF-α; IL-6; Prostate cancer; Endometrium cancer Introduction Cancer has the potential to invade or spread to other parts of the body which involves abnormal cell growth. Role of immune cells estimation in microenvironment of tumor has been well established. In the last 70 years, cancer treatment strategies have rapidly increased. Materials and Methods Experimental design Biofield treatment modalities Results and Discussion Conclusion

Impact of Biofield Treatment on Methyl-2-Naphthyl Ether Abstract Methyl-2-naphthyl ether (MNE) is an organic compound and used as the primary moiety for the synthesis of several antimicrobial and anti-inflammatory agents. This study was attempted to evaluate the impact of biofield energy treatment on the physical, thermal, and spectroscopic properties of MNE. Keywords: Methyl-2-naphthyl ether; Biofield energy; X-ray diffraction; Surface area analysis; Differential scanning calorimetry;Thermogravimetric analysis Abbreviations MNE: Methyl-2-Naphthyl Ether; NCCAM: National Center For Complementary And Alternative Medicine; XRD: X-Ray Diffraction; DSC: Differential Scanning Calorimetry; TGA: Thermogravimetric Analysis; DTA: Differential Thermal Analysis; DTG: Derivative Thermogravimetry; FT-IR: Fourier Transforms Infrared Introduction Naphthalene has been described as new class of potent antimicrobials against wide range of human pathogens. Materials and Methods Study design XRD study Crystallite size (G) = kλ/(bCosθ) Surface area analysis DSC study 1.

Phenotyping and 16S rDNA Analysis after Biofield Treatment on Citrobacter braakii: A Urinary Pathogen Title: Phenotyping and 16S rDNA Analysis after Biofield Treatment on Citrobacter braakii: A Urinary Pathogen Publication: Journal of Clinical & Medical Genomics Select license: Creative Commons Attributions-NonCommercial-ShareAlike Updated: November 21st, 2016 Abstract: Citrobacter braakii (C. braakii) is widespread in nature, mainly found in human urinary tract. Effect of Biofield Energy Treatment on Streptococcus group B: A Postpartum Pathogen | Open Access | OMICS International Abstract Streptococcus agalactiae group B (S. agalactiae gr. B) is widespread in nature mainly causes bacterial septicemia and neonatal meningitis.

Effect of Biofield Treatment on Citrobacter Braakii Abstract Citrobacter braakii (C. braakii) is widespread in nature, mainly found in human urinary tract. The current study was attempted to investigate the effect of Mr. Trivedi’s biofield treatment on C. braakii in lyophilized as well as revived state for antimicrobial susceptibility pattern, biochemical characteristics, and biotype number. Lyophilized vial of ATCC strain of C. braakii was divided into two parts, Group (Gr.) Keywords: Citrobacter braakii; Antimicrobial susceptibility; Biofield treatment; Biochemical reaction; Biotype; 16S rDNA analysis; Gramnegative bacteria; Enterobacteriaceae Introduction Citrobacter braakii (C. braakii) is a genus of Gram-negative, straight, facultative anaerobic and motile bacilli bacterium widely distributed in water, soil, and food in the environment. Materials and Methods C. braakii, American Type Culture Collection (ATCC 43162) strain was procured from MicroBioLogics, Inc., USA and stored with proper storage conditions until further use. Gr.: Group

Evaluation of Antibiogram, Genotype and Phylogenetic Analysis of Biofield Treated Nocardia otitidis Title: Evaluation of Antibiogram, Genotype and Phylogenetic Analysis of Biofield Treated Nocardia otitidis Publication: Biological Systems: Open Access Select license: Creative Commons Attributions-NonCommercial-ShareAlike Updated: November 21st, 2016 Abstract: Nocardiosis is a soil-borne aerobic infection caused by Nocardia species commonly affects the respiratory tract. Phenotyping and 16S rDNA Analysis after Biofield Treatment on Citrobacter braakii Research Article Open Access Trivedi et al., J Clin Med Genom 2015, 3:1 Volume 3 • Issue 1 • 1000129 J Clin Med Genom ISSN: IJGM, an open access journal Journal of Clinical & Medical Genomics Keywords: Citrobacter braakii; Antimicrobial susceptibility; Bioeld treatment; Biochemical reaction; Biotype; 16S rDNA analysis; Gram- negative bacteria; Enterobacteriaceae Abbreviations: MDR: Multi-Drug Resistant; ATCC: American Type Culture Collection; NBPC 30: Negative Breakpoint Combo 30; MIC: Minimum Inhibitory Concentration; OTUs: Operational Taxonomic Units; NCBI: National Center for Biotechnology Information; MEGA: Molecular Evolutionary Genetics Analysis; PCR: Polymerase Chain Reaction; RDP: Ribosomal Database Project; HBMEC: Human Brain Microvascular Endothelial Cells Introduction Citrobacter braakii (C. braakii) is a genus of Gram-negative, straight, facultative anaerobic and motile bacilli bacterium widely distributed in water, soil, and food in the environment.

Publication meta - Evaluation of Antibiogram, Genotype and Phylogenetic Analysis of Biofield Treated Nocardia otitidis - Publications Nocardiosis is a soil-borne aerobic infection caused by Nocardia species commonly affects the respiratory tract. Nocardia otitidis (N. otitidis) is the key organism for non-mycobacterial tuberculosis. The current study was attempted to investigate the effect of Mr. Trivedi's biofield energy treatment on N. otitidis and analyzed for antimicrobial susceptibility pattern, minimum inhibitory concentration (MIC), DNA polymorphism by Random Amplified Polymorphic DNA (RAPD) and 16S rDNA sequencing. The strain of N. otitidis (ATCC 14630) was divided into two parts, control and treated. Antimicrobial susceptibility was studied using the broth microdilution technique.

"Phenotyping and 16S rDNA Analysis after Biofield Treatment on Citrobac" by Mahendra Kumar Trivedi Description Citrobacter braakii (C. braakii) is widespread in nature, mainly found in human urinary tract. The current study was attempted to investigate the effect of Mr. Citation Information Trivedi MK, Branton A, Trivedi D, Nayak G, Charan S, et al. (2015) Phenotyping and 16S rDNA Analysis after Biofield Treatment on Citrobacter braakii: A Urinary Pathogen.

Related: