background preloader

Epicycles de Ptolémée

Epicycles de Ptolémée
Epicycles de Ptolémée Pour les grecs depuis Aristote (−385, −322) la Terre était le centre du Monde. Seul Aristarque de Samos (−310, −230) avait envisagé un système héliocentrique. La Terre est le centre du Monde et seuls sont possibles les mouvements rectilignes et circulaires uniformes étaient deux dogmes. Mais ces dogmes posaient aux observateurs du ciel un problème majeur : Comment expliquer les boucles des planètes ? Ptolémée a eu l'idée des épicycles. Utilisation : La partie gauche du schéma représente dans le système héliocentrique le mouvement de la Terre (en bleu) et d'une planète hypothétique (en jaune) qui mettrait exactement trois années terrestre pour parcourir son orbite. Le slider rouge permet de modifier le rapport des vitesses de rotation entre l'épicycle et le déférent. Le slider vert permet de modifier le rayon de l'épicycle. Le bouton [Départ] permet de lancer l'animation la pause et la reprise de l'animation..

http://ressources.univ-lemans.fr/AccesLibre/UM/Pedago/physique/02/divers/ptolemee.html

Related:  Différents mondes géométriquesQuelques perles rares!`test 1014

La chute d'eau d'Escher : le mouvement perpétuel en vidéo ! Je voulais évoquer dans cet article les liens entre les dessins d'Escher, la cristallographie et la topologie mais je suis tombé sur une vidéo plutôt bien faite qui m'a détourné de l'objectif initial. Je garde donc en réserve les vecteurs, les symétries, les atomes et les pavages de Penrose pour la prochaine fois ! La chute d'eau d'Escher Vous connaissez très probablement ce dessin où le graveur néerlandais, obsédé par les figures géométriques, les déformations et les boucles infinies, joue avec la perspective pour créer un cours d'eau perpétuel. Voici sa reproduction en "vrai", je vous laisse vous torturer les méninges pour comprendre le truc.

La beauté de la multiplication Question : faut-il être fou pour parler d'arithmétique modulaire à un collégien ?Réponse : non ! On l'utilise même tous les jours en regardant l'heure... Fondation Vasarely - Aix-en-Provence - Centre architectonique - France VICTOR VASARELY est un plasticien tout à fait singulier dans l’histoire de l’art du XXème siècle. Accédant à la notoriété de son vivant, il se distingue dans l’art contemporain par la création d’une nouvelle tendance : l’art optique. Son œuvre s’inscrit dans une grande cohérence, de l’évolution de son art graphique jusqu’à sa détermination pour promouvoir un art social, accessible à tous. Victor Vasarely naît à Pécs en Hongrie en 1906.

multiplication modulaire Parabolas are just the product of straight lines Parabolas are just the product of straight lines Create AccountorSign In «1x» «2x» Coordonnées polaires Pour les articles homonymes, voir Polaire. En coordonnées polaires, la position du point M est définie par la distance r et l'angle θ. Un cercle découpé en angles mesurés en degrés. Comme il s’agit d’un système bidimensionnel, chaque point est déterminé par les coordonnées polaires, qui sont la coordonnée radiale et la coordonnée angulaire.

Tracés animés Tracés animés vous permet de tracer des courbes et des surfaces, en 2D ou 3D, qui peuvent se zoomer, se déformer et tourner dans tous les sens. Démonstration. Pour animer vos courbes et surfaces, il vous suffit d'utiliser un paramètre, s. Ce paramètre aura la valeur 0 au début d'une séquence d'animation. Ensuite il va augmenter régulièrement pour s'approcher de 1 à la fin de la séquence. Vous pouvez incorporer une fonction de s dans différents champs.

Related: