background preloader

Neuroscience, free will and determinism: 'I'm just a machine'

Neuroscience, free will and determinism: 'I'm just a machine'
What does this mean in terms of free will? "We don't have free will, in the spiritual sense. What you're seeing is the last output stage of a machine. There are lots of things that happen before this stage – plans, goals, learning – and those are the reasons we do more interesting things than just waggle fingers. The conclusions are shocking: if we are part of the universe, and obey its laws, it's hard to see where free will comes into it. "If you see a light go green, it may mean press the accelerator; but there are lots of situations where it doesn't mean that: if the car in front hasn't moved, for example. Slowly, however, we are learning more about the details of that complexity. "What happens if someone commits a crime, and it turns out that there's a lesion in that brain area? This runs shockingly contrary to the sense of freedom that we feel in terms of controlling our actions, on which we base our whole sense of self and system of morality. Prof Haggard is dismissive.

Neuroscience of free will On several different levels, from neurotransmitters through neuron firing rates to overall activity, the brain seems to "ramp up" before movements. This image depicts the readiness potential (RP), a ramping-up activity measured using EEG. The onset of the RP begins before the onset of a conscious intention or urge to act. Some have argued that this indicates the brain unconsciously commits to a decision before consciousness awareness. Others have argued that this activity is due to random fluctuations in brain activity, which drive arbitrary, purposeless movements.[1] Philosophers like Daniel Dennett or Alfred Mele consider the language used by researchers. Overview[edit] ...the current work is in broad agreement with a general trend in neuroscience of volition: although we may experience that our conscious decisions and thoughts cause our actions, these experiences are in fact based on readouts of brain activity in a network of brain areas that control voluntary action... William R.

Learning how the brain does its coding Most organisms with brains can store and process a staggering range of information. The fundamental unit of the brain, a single neuron, however, can only communicate in the simplest of manners, by sending a simple electrical pulse. The challenge of understanding how information is contained in the pattern of these pulses has been bothering neurobiologists for decades, and has been given its own name: neural coding. In principle, there are two ways coding could be handled. The alternative, sparse coding, tends to be used for memory recall and sensory representations. A study released in yesterday's Science provides some perspective on just how flexible this sort of system can be. The authors of the paper traced the connections among the neurons in the mushroom body, and found that most were contacted by a single, giant interneuron that sent them inhibitory signals.

Related: