Quantum nonlocality Quantum nonlocality is the phenomenon by which the measurements made at a microscopic level necessarily refute one or more notions (often referred to as local realism) that are regarded as intuitively true in classical mechanics. Rigorously, quantum nonlocality refers to quantum mechanical predictions of many-system measurement correlations that cannot be simulated by any local hidden variable theory. Many entangled quantum states produce such correlations when measured, as demonstrated by Bell's theorem. Experiments have generally favoured quantum mechanics as a description of nature, over local hidden variable theories.[1][2] Any physical theory that supersedes or replaces quantum theory must make similar experimental predictions and must therefore also be nonlocal in this sense; quantum nonlocality is a property of the universe that is independent of our description of nature. Example[edit] Imagine two experimentalists, Alice and Bob, situated in separate laboratories. and P(b0|A1) = or
Médiathèque - Qu'est-ce que la matière ? Intégrer ce média sur votre site Découvrir & Comprendre - La matière La matière peut avoir différents états : liquide, solide, gazeux ou plasma. Ces états dépendent de la température et de la pression et caractérisent un niveau d’organisation de la matière. Dans les conditions normales de température et de pression terrestres, la matière se présente sous trois états : solide, liquide et gazeux. Le passage d’un état à l’autre correspond à une réorganisation des molécules ou des atomes dans la matière. Prenons l’exemple de l’eau : à l’état solide, sous forme de glace, l’eau a une structure très organisée dans laquelle les molécules sont fortement liées les unes aux autres. Dans des conditions de température et de pression extrêmes apparaît un nouvel état de la matière dans lequel la structure atomique elle-même est totalement désorganisée : le plasma. Ce quatrième état de la matière, que l'on retrouve dans les étoiles et le milieu interstellaire, constitue la majorité de la matière ordinaire de notre Univers (jusqu’à 90 %). Notions clés
Magnifying the Universe Embed this infographic on your site! <iframe width="500" height="323" scrolling="no" src=" frameborder="0" allowfullscreen></iframe><br />Copyright 2012. <a href=" the Universe</a> by <a href=" Sleuth</a>. The above is an interactive infographic. We have also developed a complimentary poster that you can view here: Sizes of the Universe poster. Introduction: This interactive infographic from Number Sleuth accurately illustrates the scale of over 100 items within the observable universe ranging from galaxies to insects, nebulae and stars to molecules and atoms. While other sites have tried to magnify the universe, no one else has done so with real photographs and 3D renderings. How To Use: Step 1:To experience this interactive infographic in full screen (our recommendation) click the "Full Screen" button in the top right corner of the infographic. Credits:
Quantum entanglement Quantum entanglement is a physical phenomenon that occurs when pairs or groups of particles are generated or interact in ways such that the quantum state of each particle cannot be described independently – instead, a quantum state may be given for the system as a whole. Such phenomena were the subject of a 1935 paper by Albert Einstein, Boris Podolsky and Nathan Rosen,[1] describing what came to be known as the EPR paradox, and several papers by Erwin Schrödinger shortly thereafter.[2][3] Einstein and others considered such behavior to be impossible, as it violated the local realist view of causality (Einstein referred to it as "spooky action at a distance"),[4] and argued that the accepted formulation of quantum mechanics must therefore be incomplete. History[edit] However, they did not coin the word entanglement, nor did they generalize the special properties of the state they considered. Concept[edit] Meaning of entanglement[edit] Apparent paradox[edit] The hidden variables theory[edit]
Iceberg fondant sur une mer d'huile ! De la glace qui fond dans l’eau, c’est banal ! Pourtant, cette fonte d’un iceberg sur une mer d’huile révèle que l’eau n’est pas une substance ordinaire. Fais l’expérience avec Yannick Bergeron. Un bac à glaçonsDe l’eauUn grand récipient, comme une cruche ou un verre transparentUn grand bolDe l’huile végétaleDu colorant alimentaireRemplis ton bac à glaçons d’eau.Ajoute quelques gouttes de colorant alimentaire. Quand la glace de l‘Iceberg fond, l’eau coule sous la couche d’huile. Les molécules d’eau sont plus éloignées les unes des autres dans la glace que dans l’eau. Heureusement que l’eau est une substance particulière. Merci au Débrouillard Mircea Junior Zurgalau Why Explore Space? A 1970 Letter to a Nun in Africa | Roger Launius's Blog Ernst Stuhlinger (1913-2008) Ernst Stuhlinger wrote this letter on May 6, 1970, to Sister Mary Jucunda, a nun who worked among the starving children of Kabwe, Zambia, in Africa, who questioned the value of space exploration. At the time Dr. Stuhlinger was Associate Director for Science at the Marshall Space Flight Center, in Huntsville, Alabama. Dear Sister Mary Jucunda: Your letter was one of many which are reaching me every day, but it has touched me more deeply than all the others because it came so much from the depths of a searching mind and a compassionate heart. First, however, I would like to express my great admiration for you, and for all your many brave sisters, because you are dedicating your lives to the noblest cause of man: help for his fellowmen who are in need. You asked in your letter how I could suggest the expenditures of billions of dollars for a voyage to Mars, at a time when many children on this Earth are starving to death. Very sincerely yours, Ernst Stuhlinger
Science - Quantum Physics of Consciousness and Physical Reality by StarStuffs We may therefore regard matter as being constituted by the regions of space in which the field is extremely intense...There is no place in this new kind of physics for the field and matter, for the field is the only reality." Albert Einstein, with his general theory of relativity, opened the doors of science along with the mystical realities. Einstein theorized that space and time are intertwined and that matter is inseparable from an ever-present quantum energy field and this is the sole reality underlying all appearances. This theory challenged the basic assumptions about the universe and what it contained. Physicists found that the most basic atomic particles in the cosmos comprise the very fabric of the material universe. Physicist David Bohm, in his plasma experiments, at the Berkeley Radiation Laboratory, Bohm found that individual electrons act as part of an interconnected whole. "A principle related to nonlocality is called Bell's Theorem. Superstring Theory: Unification Theory: