background preloader

Influence of Biofield Treatment on Cadmium Powder

Influence of Biofield Treatment on Cadmium Powder
Abstract Cadmium is widely utilized in nickel-cadmium batteries, stabilizers, and coating applications due to its versatile physico-chemical properties. The aim of present study was to evaluate the impact of biofield treatment on atomic, thermal, and physical properties of cadmium powder. The cadmium powder was divided into two groups, one group as control and another group as treated. The treated group received Mr. Trivedi’s biofield treatment. Keywords: Biofield treatment; Cadmium; X-ray diffraction; Differential scanning calorimetry; Particle size; Surface area; Scanning electron microscopy Introduction Cadmium (Cd) element belongs to group IIB in the Periodic Table, which originally exists in Hexagonal Closed Packing (HCP) crystal structure. Experimental Cadmium powder used in present investigation was procured from Alpha Aesar, USA. X-ray diffraction analysis Crystallite size=k λ/ b Cosθ. Where, λ is the wavelength of x-ray (=1.54056 Å) and k is the equipment constant (=0.94). Conclusion

http://trivediscience.com/publications/materials-science-publications/an-evaluation-of-biofield-treatment-on-thermal-physical-and-structural-properties-of-cadmium-powder/

Impact of Biofield Treatment on Antimony Sulfide Abstract Antimony sulfide (Sb2S3) has gained extensive attention in solar cells due to their potential as a low-cost and earth abundant absorber material. In solar cell absorber, the optoelectrical properties such as energy band gap and absorption coefficient of Sb2S3 play an important role, which have strong relationships with their crystal structure, lattice parameter and crystallite size. Hence in the present investigation, Sb2S3 powder samples were exposed to biofield treatment, and further its physical, structural and spectral properties are investigated. The particle size analysis showed larger particle size and surface area after treatment. X-ray diffraction (XRD) analysis revealed polycrystalline orthorhombic structure with superior crystallinity in treated Sb2S3 along with significant changes in the lattice parameters, which led to changes in unit cell volume and density.

Improved Susceptibility Pattern of Antimicrobials Using Vital Energy Treatment on Shigella sonnei *The embed functionality can only be used for non commercial purposes. In order to maintain its sustainability, all mass use of content by commercial or not for profit companies must be done in agreement with figshare. Description Complementary and alternative medicine (CAM) has become increasingly popular and reported for countless benefits in biomedical health care systems. The study assessed the potential impact of The Trivedi Effect® (biofield energy) on Shigella sonnei for changes in antimicrobial sensitivity, biochemical study, and biotype number using MicroScan Walk-Away® system.

Evaluation of Biofield Treatment on Physical and Structural Properties of Bronze Powder - Trivedi Science Abstract Bronze, a copper-tin alloy, widely utilizing in manufacturing of gears, bearing, and packing technologies due to its versatile physical, mechanical, and chemical properties. The aim of the present work was to evaluate the effect of biofield treatment on physical and structural properties of bronze powder. Bronze powder was divided into two samples, one served as control and the other sample was received biofield treatment.

Biofield Treatment on Brass Powder Abstract Brass, a copper-zinc (Cu-Zn) alloy has gained extensive attention in industries due to its high corrosion resistance, machinability and strength to weight ratio. The aim of present study was to evaluate the effect of biofield treatment on structural and physical properties of brass powder. The brass powder sample was divided into two parts: control and treated. The treated part was subjected to Mr.Trivedi’s biofield treatment. Control and treated brass powder were characterized using particle size analyser, X-ray diffraction (XRD), scanning electron microscope (SEM), and Fourier transform infrared (FT-IR) spectroscopy.

The Impact of Trivedi Effect on Silicon Carbide Abstract Silicon carbide (SiC) is a well-known ceramic due to its excellent spectral absorbance and thermo-mechanical properties. The wide band gap, high melting point and thermal conductivity of SiC is used in high temperature applications. The present study was undertaken to investigate the effect of biofield treatment on physical, atomic, and structural characteristics of SiC powder.

Effect of Biofield Treatment on Boron Nitride Abstract Boron nitride (BN) is known for high hardness, thermal stability, thermal conductivity, and catalytic action. The aim of this study was to investigate the effect of biofield treatment on physical, structural and spectral properties of BN powder. The control and treated sample of BN powder were characterized by X-ray diffraction (XRD), surface area analysis and Fourier transform infrared spectroscopy (FT-IR). Publication meta - Improved Susceptibility Pattern of Antimicrobials Using Vital Energy Treatment on Shigella sonnei - Publications Complementary and alternative medicine (CAM) has become increasingly popular and reported for countless benefits in biomedical health care systems. The study assessed the potential impact of The Trivedi Effect ® (biofield energy) on Shigella sonnei for changes in antimicrobial sensitivity, biochemical study, and biotype number using MicroScan Walk-Away ® system. The cells were obtained from MicroBioLogics Inc., USA bearing the American Type Culture Collection (ATCC 9290) number, and divided into two groups, Group (Gr.) I: control and Gr.

Evaluation of Antibiogram, Genotype and Phylogenetic Analysis of Biofield Treated Nocardia otitidis - Trivedi Science Abstract Nocardiosis is a soil-borne aerobic infection caused by Nocardia species commonly affects the respiratory tract. Nocardia otitidis (N. otitidis) is the key organism for non-mycobacterial tuberculosis. The current study was attempted to investigate the effect of Mr. Trivedi’s biofield energy treatment on N. otitidis and analyzed for antimicrobial susceptibility pattern, minimum inhibitory concentration (MIC), DNA polymorphism by Random Amplified Polymorphic DNA (RAPD) and 16S rDNA sequencing. The strain of N. otitidis (ATCC 14630) was divided into two parts, control and treated.

Impact of Biofield Treatment on Manganese (II, III) Oxide Abstract In Mn3O4, the crystal structure, dislocation density, particle size and spin of the electrons plays crucial role in modulating its magnetic properties. Present study investigates impact of Biofield treatment on physical and atomic properties of Mn3O4. Mahendra Trivedi & Biofield Treated Zirconia & Silica Powder Abstract Zirconium oxide and silicon dioxide powders are selected and subjected to a non-contact Biofield energy known to be transmitted by Mahendra Kumar Trivedi. Particle sizes d50 and d99 showed up to 71.5 percent decrease indicating that the energy had caused deformation and fracture as if the powders have been subjected to high energy milling. This is also supported by increase in specific surface area up to 19.48 percent.

"An Effect of Biofield Treatment on Multidrug-resistant Burkholderia ce" by Mahendra Kumar Trivedi Abstract Burkholderia cepacia (B. cepacia) is an opportunistic, Gram negative pathogen which causes infection mainly in immunocompromised population and associated with high rate of morbidity and mortality in cystic fibrosis patients. Aim of the present study was to analyze the impact of biofield treatment on multidrug resistant B. cepacia. Clinical sample of B. cepacia was divided into two groups i.e. control and biofield treated.

"Improved Susceptibility Pattern of Antimicrobials Using Vital Energy T" by Mahendra Kumar Trivedi Description Complementary and alternative medicine (CAM) has become increasingly popular and reported for countless benefits in biomedical health care systems. The study assessed the potential impact of The Trivedi Effect® (biofield energy) on Shigella sonnei for changes in antimicrobial sensitivity, biochemical study, and biotype number using MicroScan Walk-Away® system. The cells were obtained from MicroBioLogics Inc., USA bearing the American Type Culture Collection (ATCC 9290) number, and divided into two groups, Group (Gr.) The Potential Impact of Biofield Treatment on Human Brain Tumor Cells: A Time-Lapse Video Microscopy - Trivedi Science Abstract Study background: Glioblastoma (GBM) is the most common subtype of primary brain tumor in adults. The aim was to evaluate the impact of biofield treatment potential on human GBM and non-GBM brain cells using two time-lapse video microscopy technique.

Related: