Nombre-dor. L'Anneau des Mathématiques Francophones. Le Nombre d'Or. Le nombre d'or. (Vitruve, architecte romain 1er siècle avant notre ère). Ainsi si a et b sont les deux grandeurs alors nous aurons : a/b = (a + b) / a. A/b = 1 + b/a pour simplifier, prenons comme variable x = a/b. alors nous obtenons : x = 1 + 1/x x - 1 - 1/x = 0 comme x non nul, nous obtenons l'équation suivante que nous noterons (E) : x2 - x - 1 = 0 qui admet comme racine positive : x = que nous notons Φ et vaut à peu près 1,618... C'est cette valeur qui est appelée le nombre d'or (dit Φ (phi) en hommage au sculpteur grec Phidias qui s'en servit dans les proportions du Parthénon à Athènes.
En espagne, deux tableaux de Antonio de Garcia de Pablo, muchas gracias ;): Pour voir les images suivantes en plus grand les cliquer. Le nombre d'or. L' histoire ...
Il y a 10 000 ans : Première manifestation humaine de la connaissance du nombre d'or (temple d'Andros découvert sous la mer des Bahamas). 2800 av JC : La pyramide de Khéops a des dimensions qui mettent en évidence l'importance que son architecte attachait au nombre d'or. Vè siècle avant J-C. (447-432 av.JC) : Le sculpteur grec Phidias utilise le nombre d'or pour décorer le Parthénon à Athènes, en particulier pour sculpter la statue d'Athéna Parthénos .
Il utilise également la racine carrée de 5 comme rapport.