Echos de la recherche Ces articles sont écrits par des mathématiciens et sont destinés à des non-mathématiciens. Ils essayent de montrer ce que peut être la recherche mathématique contemporaine, sous des aspects aussi variés que possible. Ils se déclinent en quatre couleurs, verte, bleue, rouge et noire, suivant le niveau du lecteur auquel ils se destinent. le 25 octobre 2016En 2015, Jean Bertoin a reçu le prix Thérèse Gautier de l’Académie des Sciences. A cette occasion, il nous explique ce que sont les processus de fragmentation, et le cheminement qui... lire l'article le 10 septembre 2016Cet article décrit la théorie de Shannon pour la compression des données, et insiste en particulier sur la borne de l’entropie. lire l'article le 18 août 2016Deux voleurs, Alice et Bob, viennent de rafler un magnifique collier, formé de perles de types variés.
BouScol Les ressources Internet suggérées dans BouScol ont fait l'objet d'une brève analyse selon des critères d'évaluation généralement reconnus. Nous vous proposons un ensemble de ressources pertinentes sur l'évaluation de la fiabilité et de la validité de l'information sur Internet. BouScol est un répertoire de ressources Internet classées selon le modèle de l'école. C'est un lieu de référence pour tous les intervenants qui oeuvrent dans le milieu scolaire au Québec. Les enseignantes et les enseignants, notre clientèle principale, pourront trouver des ressources en naviguant d'abord dans les Classes où près de 1 200 sites sont répertoriés d'abord dans un classement par sujet pour ensuite être reclassés dans les tableaux des ordres d'enseignement primaire et secondaire. Bonne navigation !
Banque de dépannage linguistique Vous écrivez dans les réseaux sociaux? Vous vous souciez de la qualité de vos communications? Le nouveau sous-thème de la BDL vous plaira! La banque vous propose des nouveautés portant sur la rédaction dans les réseaux sociaux. Qu’il s’agisse de balises pour la rédaction de mots-clics, de l’intégration d’hyperliens ou même de suggestions pour la présentation de l’information, les articles fournissent des repères pour adopter de bonnes pratiques rédactionnelles dans les communications numériques.
Alpha: Computational Knowledge Engine L'infini est-il paradoxal en mathématiques ? Jean-PaulDelahaye Mathématicien Informaticien Pour résoudre le paradoxe du tout et des parties et affronter l’hypothèse du continu, notre idée de l’infini actuel doit évoluer ; aujourd’hui encore, nous découvrons de nouveaux infinis. L’infini mathématique peut-il être maîtrisé ? Autrement dit, peut-on faire une théorie de l’infini qui évite tout paradoxe et toute incohérence ? Pour répondre à ces questions, nous distinguerons paradoxes et situations logiquement peu satisfaisantes. PCCL - Physique Chimie au Collège et au Lycée : soutien scolaire en animations pédagogiques flash de cours et exercices corrigés de sciences physiques. cinquieme - quatrieme - troisieme - seconde - premiere - terminale - 5e 4e 3e 2e 1S TS jusqu'au baccala
IREM de Lyon Bon courage, si vous n’avez pas d’ordinateur portable, l’IREM a une dizaine de (relativement vieilles) bécanes sous linux qui peuvent vous dépanner, contactez-nous. Lesson studies Michèle Artigue (IREM de Paris), Charlotte Derouet (IREM de Strasbourg) et Blandine Masselin (IREM de Rouen) Profetic origami_constructions.pdf (Objet application/pdf) At the First International Meeting of Origami Science and Technology, Humiaki Huzita and Benedetto Scimemi presented a series of papers, in one of which they identified six distinctly different ways one could create a single crease by aligning one or more combinations of points and lines (i.e., existing creases) on a sheet of paper. Those six operations became known as the Huzita axioms. The Huzita axioms provided the first formal description of what types of geometric constructions were possible with origami: in a nutshell, quite a lot was possible! The six Huzita axioms. The six axioms are shown to the right. It has been shown that using the six Huzita axioms, it is possible to:
Mathématiques des origamis Un article de Wikipédia, l'encyclopédie libre. Les pliages d'origamis sont utilisés en mathématiques pour procéder à des constructions géométriques. Selon les méthodes de pliages utilisées, on obtient des procédés plus riches que ceux propres à la règle et au compas. Formalisation des origamis[modifier | modifier le code] Tangente, l'aventure mathématique Je m'abonne Tangente n°168 - Les maths du sport Parution: 01 - 2016
Accromath est une revue portant sur les mathématiques (notre professeur, M. Gourdeau, écrit même pour le magazine). Le mag aborde des sujets divers très intéressants. Génial à montrer aux élèves plus curieux ! by cubehead Apr 20
Accromath est une revue en ligne portant sur plusieurs sujets des mathématiques. Je l'utiliserai pour intégrer une notion difficile en mathématiques dans lequel la revue a commenté. by ecd12 Apr 13
Revue très intéressante qui est produite par l'institut des sciences mathématiques et par le centre de recherches mathématiques. Cette revue s'adresse aux élèves et enseignants des écoles secondaires et cégeps. Elle est distribuée gratuitement dans les écoles secondaires. À lire! by sheshe Apr 13
Revue en ligne, à lire pour tous, autant enseignants qu'élèves. by marc1203 Feb 28
Accromath est une revue en ligne très intéressante pour intégrer les mathématiques dans nos cours. by audreygauthier Feb 14